Chapter 6

ENERGY CONSIDERATION

Introduction:

1.) Newton's Second Law is nice because it provides us with a technique for attacking a certain class of problems. "Focus your attention on the forces acting on a body," it says, "and you can deduce something about the body's acceleration." As useful as this is, there are other ways to approach motion and physical systems. We are about to develop a new perspective that focuses on the energy content of a system.
2.) One of the techniques theoretical physicists use to characterize a physical system is to identify all the parameters (i.e., force or displacement or whatever) that govern a phenomenon of interest, then multiply those parameters together. The resulting number or vector then acts as a watermark that allows an individual to predict how pronounced the phenomenon in question will be in a particular instance.
a.) Example: What governs the change of a body's velocity? The force component along the line of motion certainly matters; so does the distance over which the force is applied. If the product of those two quantities is big, you know the resulting velocity change will be relatively big. If small, the velocity change will be relatively small.
3.) We are about to build a mathematical model that begins with the very product alluded to in Part $2 a$, then look to see where that definition logically takes us. Hold on to your skirts, ladies. This should be fun.

A.) Work:

1.) The beginning definition: As was said above, a change in a body's velocity is governed by the magnitude of the component of force along the line of the displacement and the magnitude of the displacement itself. The product of those two parameters, $F_{/ /}$and d, defines the dot product $\boldsymbol{F} \cdot \boldsymbol{d}$. That quantity is given a special name. It is called work.
2.) By definition, the work W_{F} done by a constant force \boldsymbol{F} acting on a body that moves some straight-line distance \boldsymbol{d} (note that \boldsymbol{d} is a vector that de-
fines both the direction and the magnitude of the displacement of the body) is equal to:

$$
\begin{aligned}
\mathrm{W} & =\mathbf{F} \cdot \mathbf{d} \\
& =|\mathbf{F} \| \mathbf{d}| \cos \phi,
\end{aligned}
$$

where ϕ is the angle between the line of \boldsymbol{F} and the line of \boldsymbol{d}.
3.) Example: A box of mass $m=2 \mathrm{~kg}$ moving over a frictional floor ($\mu_{k}=3$) has a force whose magnitude is $F=25$ newtons applied to it at a 30° angle, as shown in Figure 6.1 (note that ϕ equals the angle θ in the sketch). The crate is observed to move 16 meters in the horizontal before falling off the table (that is, $\boldsymbol{d}=16 \boldsymbol{i}$ meters). An f.b.d. for the forces acting on the block is shown in Figure 6.2.

a.) How much work does \boldsymbol{F} do before the crate takes the plunge?

$$
\begin{aligned}
\mathrm{W}_{\mathbf{F}} & =\mathbf{F} \cdot \mathbf{d} \\
& =|\mathbf{F}| \quad|\mathbf{d}| \quad \cos \theta \\
& =(25 \text { newtons }) \\
& (16 \text { meters }) \cos 30^{\circ}, \\
& =346.4 \text { newton-meters. }
\end{aligned}
$$

Note 1: A newton-meter (or a $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$) is the MKS unit for both work and energy. It has been given a special name--the JOULE. We could, therefore, have written the work done by F as " 346.4 joules."

Note 2: Work and energy units in the CGS system are dyne-centimeters (or $\mathrm{gm} \cdot \mathrm{cm}^{2} / \mathrm{s}^{2}$). That combination has been given the name ERGES. In the English system, work and energy units are in FOOT-POUNDS.
b.) The above dot product was done from a polar notation approach (i.e., you multiplied the magnitude of one vector times the magnitude of the second vector times the cosine of the angle between the line-of-the-twovectors) because the force information was given in polar notation. If the initial information had been given in unit vector notation, we would have used the unit vector approach for the dot product.

For the sake of completeness, let us do the problem from that perspective:
i.) The unit vector representation of the force vector presented in our problem above is:

$$
\mathbf{F}=(21.65 \mathbf{i}+12.5 \mathbf{j}) \text { nts. }
$$

ii.) Dot products executed in unit vector notation are defined as:

$$
\begin{aligned}
\mathbf{F} \cdot \mathbf{d} & =\left(\mathrm{F}_{\mathrm{x}} \mathbf{i}+\mathrm{F}_{\mathrm{y}} \mathbf{j}+\mathrm{F}_{\mathrm{z}} \mathbf{k}\right) \cdot\left(\mathrm{d}_{\mathrm{x}} \mathbf{i}+\mathrm{d}_{\mathrm{y}} \mathbf{j}+\mathrm{d}_{\mathrm{z}} \mathbf{k}\right) \\
& =\left(\mathrm{F}_{\mathrm{x}} \mathrm{~d}_{\mathrm{x}}\right)+\left(\mathrm{F}_{\mathrm{y}} \mathrm{~d}_{\mathrm{y}}\right)+\left(\mathrm{F}_{\mathrm{z}} \mathrm{~d}_{\mathrm{z}}\right) .
\end{aligned}
$$

iii.) As $d_{z}=0$, we have:

$$
\begin{aligned}
\mathrm{W}_{\mathbf{F}} & =\mathbf{F} \cdot \mathbf{d} \\
& =\left(\mathrm{F}_{\mathrm{x}} \mathbf{i}+\mathrm{F}_{\mathrm{y}} \mathbf{j}\right) \cdot\left(\mathrm{d}_{\mathrm{x}} \mathbf{i}+\mathrm{d}_{\mathrm{y}} \mathbf{j}\right) \\
& =(21.65 \mathbf{i}+12.5 \mathbf{j}) \cdot(16 \mathbf{i}) \\
& =(21.65 \text { newtons })(16 \text { meters })+(12.5 \text { newtons })(0) \\
& =346.4 \text { joules. }
\end{aligned}
$$

This is the same value we determined using the polar approach. As expected, the two approaches yield the same solution.
c.) In our example, how much work does the normal force do? The temptation is to assume that we need to determine the magnitude of the normal force before doing this, but a little insight will save us a lot of trouble here. From the definition of work:

$$
\begin{aligned}
\mathrm{W}_{\mathbf{N}} & =\mathbf{F} \cdot \mathbf{d} \\
& =|\mathbf{N}||\mathbf{d}| \cos \phi .
\end{aligned}
$$

The trick is to notice that the angle ϕ between \boldsymbol{N} and \boldsymbol{d} is 90° (see the free body diagram shown in Figure 6.2). As $\cos 90^{\circ}=0, W_{N}=0$.

In fact, normal forces are always perpendicular to a body's motion. As such, their work contribution will always be ZERO. Normal forces do no work on a moving body.
d.) How much work does the frictional force do on the body as it moves toward the abyss?
i.) To do this part, we need to determine the normal force N so that we can determine the frictional force using the relationship $f_{k}=\mu_{k} N$. Utilizing both the f.b.d. shown in Figure 6.2 and Newton's Second Law:

$$
\frac{\sum \mathrm{F}_{\mathrm{y}}:}{\mathrm{N}}+\mathrm{F}(\sin \theta)-\mathrm{mg}=\mathrm{ma} \mathrm{y}
$$

As $a_{y}=0$, rearranging yields:

$$
\begin{aligned}
\mathrm{N} & =-\mathrm{F}(\sin \theta)+\mathrm{mg} \\
& =-(25 \text { newtons })\left(\sin 30^{\circ}\right)+(2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =7.1 \text { newtons. }
\end{aligned}
$$

The frictional force will be:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{k}} & =\mu_{\mathrm{k}} \mathrm{~N} \\
& =(.3)(7.1 \text { newtons }) \\
& =2.13 \text { newtons } .
\end{aligned}
$$

ii.) Noticing that the angle between the line of \boldsymbol{f}_{k} and the line of \boldsymbol{d} is 180°, the work done by friction will be:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{f}} & =\mathbf{f}_{\mathrm{k}} \cdot \mathbf{d} \\
& =\left|\mathbf{f}_{\mathrm{k}}\right||\mathbf{d}| \cos \phi \\
& =(2.13 \text { newtons })(16 \text { meters }) \cos 180^{\circ} \\
& =-34.1 \text { joules. }
\end{aligned}
$$

Note 1: Yes, work quantities can be negative. In fact, whenever the angle between the line of \boldsymbol{F} and the line of \boldsymbol{d} is greater than 90° and less than or equal to 180°, the cosine of the angle will yield a negative number.

Note 2: The negative sign is not associated with direction. Work is a scalar quantity--IT HAS NO DIRECTION. A negative sign in front of a work quantity tells you that the force doing the work is oriented so as to slow the body down.

4.) Comments:

a.) Mathematically, the physics concept of work is rigidly defined. Hold a 25 pound weight at arm length for fifteen minutes and although there may be sweat pouring off your brow, you will nevertheless be doing no work. Why? Because for work to occur, a FORCE must be applied to a body as it moves over a DISTANCE. If there is no displacement (example: your arm held motionless for fifteen minutes), no work is done.
b.) When work is done by a single force acting on an object, it changes the object's motion (i.e., speeds it up or slows it down). Again, the key is motion. Things become more complicated when many forces act on a body, but in all cases, having some net amount of work being done implies there is motion within the system.
c.) On an intuitive level, forces that do positive work are oriented so as to make a body speed up; forces that do negative work are oriented so as to make a body slow down. It is as though doing positive work puts energy into the system while doing negative work pulls energy out of the system. (We will more fully define the idea of energy shortly).

B.) Work Due to Variable Forces:

1.) When work is done by a force-and-displacement combination that in some way varies as a body moves (i.e., the force changes magnitude along the way or the angle between the force and displacement changes), we can no longer write $W_{F}=\boldsymbol{F} \cdot \boldsymbol{d}$ and proceed from there. That relationship holds only when all the parameters stay constant throughout the motion.

To deal with the varying force or angle situation, we must use Calculus.
a.) If we take a differential displacement $d \boldsymbol{r}$ to be a very small distance traveled along a body's path as it moves from one point to another in a force field \boldsymbol{F}, the differential amount of work (read this "a very small amount of work in comparison to the whole of the work done") will equal the dot product between \boldsymbol{F} and $d \boldsymbol{r}$. Mathematically, this is:

$$
\mathrm{dW}=\mathbf{F} \cdot \mathrm{d} \mathbf{r} .
$$

b.) Summing this dot product over the entire path will give us the entire amount of work done by the force over the motion. In short, if we want the work done in such cases, we must determine the integral:

$$
\mathrm{W}=\int \mathrm{dW}=\int \mathbf{F} \cdot \mathrm{dr} .
$$

c.) There are two ways to evaluate a dot product: using a unit vector approach and using a polar approach. The easiest way to see how each works is with an example.
2.) Consider a body constrained by a group of forces to move along a path described by $y=1$. If one of those forces (call it \boldsymbol{F}) is defined by the function:

$$
\mathbf{F}=\mathrm{k}(\mathrm{x} \mathbf{i}+\mathrm{y} \mathbf{j}),
$$

where k is a constant equal to $1 \mathrm{nt} /$ meter (that is, k is in the problem solely for the sake of units), how much work does the force do as the body moves from $x_{1}=1$ meter to $x_{2}=5$ meters?

Note 1: The situation is shown in Figure 6.3, complete with the force

FIGURE 6.3 magnitude and angle at the points $(1,1)$ and $(5,1)$.

Note 2: The other forces acting on the body also do work, but we are not interested in them. All we want is the amount of work done by force \boldsymbol{F}.
3.) Using a UNIT VECTOR approach:
a.) The most general way to define a differential displacement $d \boldsymbol{r}$ is with the relationship:

$$
\mathrm{d} \mathbf{r}=(\mathrm{dx}) \mathbf{i}+(\mathrm{dy}) \mathbf{j}+(\mathrm{dz}) \mathbf{k}
$$

That is, vectorially adding differential displacements in the x, y, and z directions will yield a vector whose net displacement is differential and whose magnitude is:

$$
|d \mathbf{r}|=\left[d x^{2}+d y^{2}+d z^{2}\right]^{1 / 2} .
$$

b.) Looking at Figure 6.4, it is clear that the displacement is in the x direction, and the x direction only. As such, the magnitude of differential displacement in this example will simply be $d x$.
c.) We know the force function (i.e., $\boldsymbol{F}=k(x \boldsymbol{i}+y \mathbf{j})$) in unit vector notation--that is the way the force was given in the

FIGURE 6.4 problem. Remembering how to do a dot product in unit vector notation, and remembering that $k=1$, we can write our work expression as:

$$
\begin{aligned}
W & =\int d W \\
& =\int \mathbf{F} \cdot d \mathbf{r} \\
& =\int(k x \mathbf{i}+k y \mathbf{j}) \bullet(d x \mathbf{i}) \\
& =\int_{x=1}^{5}(k x) d x \\
& =\left[k \frac{x^{2}}{2}\right]_{x=1}^{5} \\
& =\left[(1) \frac{(5)^{2}}{2}-(1) \frac{(1)^{2}}{2}\right] \\
& =12 \text { joules. }
\end{aligned}
$$

Note: If you are wondering why the $k y j$ term has not been carried along in the above calculation, think about the definition of dot product in unit vector notation. The x components are multiplied together, as are the y components and z components, then the products are added together. As there is no y-direction differential displacement (i.e., no dy), the y contribution to the dot product is zero leaving only $k x(d x)$ under the integral.
4.) Using a POLAR approach:
a.) The magnitude of the differential displacement is still:

$$
|\mathrm{d} \mathbf{r}|=\mathrm{dx} .
$$

b.) The magnitude of the force function (i.e., $\boldsymbol{F}=k(x \boldsymbol{i}+y \boldsymbol{j})$) is:

$$
\begin{aligned}
|\mathbf{F}| & =\left[(\mathrm{kx})^{2}+(\mathrm{ky})^{2}\right]^{1 / 2} \\
& =\mathrm{k}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{1 / 2}
\end{aligned}
$$

c.) Looking at Figure 6.5, the cosine of the angle between the line of \boldsymbol{F} and the line of $d \boldsymbol{r}=(d x) \boldsymbol{i}$ is:

$$
\begin{aligned}
\cos \theta & =\left[\mathrm{F}_{\mathrm{x}}\right] /[\mathrm{F}] \\
& =[\mathrm{kx}] /\left[\mathrm{k}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{1 / 2}\right] \\
& =[\mathrm{x}] /\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{1 / 2} .
\end{aligned}
$$

d.) Putting it all together:

$$
\begin{aligned}
W & =\int d W \\
& =\int \mathbf{F} \cdot d \mathbf{r} \\
& =\int \quad|\mathbf{F}| \quad|d \mathbf{r}| \quad \cos \theta \\
& =\int\left[k\left(x^{2}+y^{2}\right)^{1 / 2}\right][d x]\left[\frac{x}{\left[\left(x^{2}+y^{2}\right)^{1 / 2}\right]}\right] \\
& =\int_{x=1}^{5}(k x) d x .
\end{aligned}
$$

This is the same integral we found using the unit vector approach.

C.) Even More Fun With Force Functions That Vary:

1.) A ball hangs from a rope attached to a ceiling, as shown in Figure 6.6. A variable, horizontal force \boldsymbol{F} is applied to the ball so that:
a.) \boldsymbol{F} is ALWAYS horizontal; and
b.) \boldsymbol{F}^{\prime} 's magnitude varies so that the ball moves up the arc with a constant velocity; and
c.) The ball's velocity is very low.
2.) Assuming the ball's mass is m, how much work does \boldsymbol{F} do as the ball moves from $\theta=$ 0^{o} to $\theta=\theta_{1}$?

3.) Using a $P O L A R$ approach:

FIGURE 6.6
a.) For a dot product using a polar approach, we need the magnitude of the force, the magnitude of the displacement, and the angle between the line of the force and the line of the displacement.
b.) Because the angle between the force and the displacement is constantly changing, we must use the integral form of the definition of work. That means the displacement we want is a differential displacement $d \boldsymbol{r}$ and the amount of work done by the force $\boldsymbol{F}(\theta)$ will be:

$$
\mathrm{W}=\int \mathrm{d} \mathrm{~W}=\int \mathbf{F} \cdot \mathrm{d} \mathbf{r} .
$$

Note: There is a common error people make in doing problems like this. If one determines \boldsymbol{F} at a known angle (say, $\theta=\theta_{1}$), the dot product under the integral will not be general. As the integral is supposed to sum $\boldsymbol{F} \cdot d \boldsymbol{r}$ terms at all angles between the limits, the function that defines \boldsymbol{F} must be generally good for any arbitrary angle.
c.) We need to use N.S.L. to determine the force as a function of the angular displacement of the string (i.e., $\boldsymbol{F}(\theta)$) at any arbitrary angle.
i.) As we have assumed that the magnitude of the velocity is constant, the acceleration of the mass along the path will be zero.
ii.) As we have assumed the magnitude of the velocity is VERY, VERY SMALL, we can ignore the centripetal acceleration (i.e., v^{2} / R) directed along the line of tension as the mass moves up the arc.
iii.) Note that with these assumptions, there is no appreciable acceleration in ANY direction.
d.) We are interested in determining \boldsymbol{F}. As there is no acceleration in any direction, and as \boldsymbol{F} is in the horizontal direction, we can use N.S.L. and the f.b.d. shown in Figure 6.7a to write:

$$
\begin{array}{rlr}
\sum \mathrm{F}_{\mathrm{x}}: & \\
& -\mathrm{T}(\sin \theta)+\mathrm{F}=\mathrm{ma}_{\mathrm{x}} & \\
=0 & \left(\text { (as } a_{x}=0\right) \\
\Rightarrow \mathrm{F}=\mathrm{T}(\sin \theta) . & \text { (Equation A). }
\end{array}
$$

$$
\begin{array}{rl}
\sum \mathrm{F}_{\mathrm{y}} \mathrm{i} & \mathrm{~T}(\cos \theta)-\mathrm{mg}=\mathrm{ma}_{\mathrm{y}} \\
& =0 \\
\quad \Rightarrow \quad \mathrm{~T}=\mathrm{mg} /(\cos \theta) & \left(\text { as } a_{y}=0\right) \\
\text { (Equation B). }
\end{array}
$$

Substituting Equation B into Equation A, we get:

$$
\begin{aligned}
\mathrm{F} & =\mathrm{T}(\sin \theta) \\
& =[\mathrm{mg} /(\cos \theta)](\sin \theta) \\
& =\mathrm{mg}[(\sin \theta) /(\cos \theta)] \\
& =\mathrm{mg}(\tan \theta) .
\end{aligned}
$$

e.) The differential displacement $d \boldsymbol{r}$ of the mass requires the string to move in such a way as to subtend a differential angle $\mathrm{d} \theta$ (see Figure 6.7b). If the angle is truly differential, it will be tiny and the arc length of the arc upon which the mass moves will approach the net differential displacement $d r$. In other words, if we can determine an expression for the arc length associated with $\mathrm{d} \theta$, we will have an expression for the magnitude of $d r$.

FIGURE 6.7b

If the angle $\mathrm{d} \theta$ is measured in radians, the arc length will equal $L(\mathrm{~d} \theta)$. That means:

$$
|\mathrm{d} \mathbf{r}|=\mathrm{L}(\mathrm{~d} \theta)
$$

Note: This is not as obscure as it sounds. A one-radian angle is defined as an angle whose arc length equals the radius R of the circle upon which it is measured. That means a one-half radian angle has an arc length of $(1 / 2) R$, and a θ radian angle has an arc length of $(\theta) R$. As the angle in our case is $\mathrm{d} \theta$, the arc length is the radius (i.e., the string's length L) times the angle $\mathrm{d} \theta$ or $L \mathrm{~d} \theta$.
f.) The only thing needed is to relate the angle between the line of \boldsymbol{F} and the line of $d \boldsymbol{r}$ (call this ϕ for the moment). AS CAN BE SEEN in Figure 6.7c, ϕ and θ are the same angle.
g.) We are now ready to use our definition of work to determine the amount of work \boldsymbol{F} does as the body moves from $\theta=O^{o}$ to $\theta=\theta_{1}$. Specifically:

$$
\begin{aligned}
W & =\int d W \\
& =\int \mathbf{F} \cdot d \mathbf{r} \\
& =\int|\mathbf{F}| \quad|\mathrm{d} \mathbf{r}| \cos \phi \\
& =\int[m g(\tan \theta)][\mathrm{Ld} \theta](\cos \theta) \\
& =m g L \int\left[\frac{\sin \theta}{\cos \theta}\right](\cos \theta) \mathrm{d} \theta \\
& =m g L \int_{\theta=0}^{\theta_{1}} \sin \theta \mathrm{~d} \theta \\
& =\operatorname{mgL}[-\cos \theta]_{\theta=0}^{\theta_{1}} \\
& =\operatorname{mgL}\left[\left(-\cos \theta_{1}\right)-\left(-\cos 0^{\circ}\right)\right] \\
& =\operatorname{mgL}\left[1-\cos \theta_{1}\right]
\end{aligned}
$$

4.) Using a UNIT VECTOR approach:
a.) For a dot product using a unit vector approach, we need both the force and displacement as unit vectors.
b.) We know the force's magnitude is $\operatorname{mg}(\tan \theta)$ and its direction is always in the $+\boldsymbol{i}$ direction. That is:

$$
\mathbf{F}=[\mathrm{mg}(\tan \theta)] \mathbf{i} .
$$

c.) We also know the displacement is:

$$
\mathrm{d} \mathbf{r}=(\mathrm{dx}) \mathbf{i}+(\mathrm{dy}) \mathbf{j}+(\mathrm{dz}) \mathbf{k}
$$

d.) The only problem: The variable $\tan \theta$ is not explicitly a function of x and/or y variables. That is easily remedied by examining the displacement sketched in Figure 6.7d. Using trig on the right triangle, we get:

$$
\begin{aligned}
\tan \theta & =(\text { opposite }) /(\text { adjacent }) \\
& =(d y) /(d x)
\end{aligned}
$$

blow-up of differential displacement at some arbitrary angle θ

$$
\tan \theta=(\mathrm{dy}) /(\mathrm{dx})
$$

e.) Putting it all together, we get:

$$
\begin{aligned}
& W=\int d W \\
&=\int \mathbf{F} \cdot d \mathbf{r} \\
&=\int[m g(\tan \theta) \mathbf{i}] \cdot[(\mathrm{dx}) \mathbf{i}+(\mathrm{dy}) \mathbf{j}] \\
&=\int\left[m g\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right) \mathbf{i}\right] \cdot[(\mathrm{dx}) \mathbf{i}+(\mathrm{dy}) \mathbf{j}] \\
&=\int\left[m g\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right) \mathrm{dx}\right] \\
&=\int_{\mathrm{y}=0}^{y_{\theta_{1}}}(\mathrm{mg}) \mathrm{dy} \\
&=\mathrm{mg}[\mathrm{y}]_{0}^{\mathrm{y}_{\theta_{1}}} \\
&=\mathrm{mgy} \\
& \theta_{\theta_{1}}
\end{aligned}
$$

f.) Determining the y coordinate (call this y_{1}) of the ball when it is located at angle θ_{1} is not as difficult as it looks. Consider Figure 6.8. We know the string length is L. When in the vertical, the string length can also be written $L=L \cos$ $\theta+y_{1}$. That means:

$$
\mathrm{y}_{1}=\mathrm{L}-\mathrm{L}(\cos \theta)
$$

FIGURE 6.8
g.) Using that relationship in our work expression, we get:

$$
\begin{aligned}
\mathrm{W} & =\operatorname{mgy}_{1} \\
& =m g[\mathrm{~L}-\mathrm{L}(\cos \theta)] \\
& =m g[\mathrm{~L}-\mathrm{L} \cos \theta] .
\end{aligned}
$$

This is exactly the expression we determined using the polar approach on the problem.
5.) Don't be put off if a lot of the mathematical maneuvering you've just seen seems a bit mysterious. The reason you are in this class is to see how physicists use math to create theoretical models of the world. If physics was trivially obvious, you'd already know it all and there would be no reason to take the class!

D.) The Work/Energy Theorem:

1.) We would like to relate the total, net work done on an object to its resulting change in velocity. This next section is the derivation of just such a relationship.

Note 1: You will not be held responsible for duplicating any of the material you are about to read in this part (i.e., Part D-1) except the bottom line. BUT, if you don't understand how we got there, the bottom line won't mean much. Also, the work/energy theorem is a half-way point to where we are really going. Understand it, but also understand that there is a more powerful presentation of the same idea coming up soon.

My suggestion is that you read this part, not for memorization purposes but for content. Follow each step as it comes without projecting ahead, and when you finally get to the end-result, take the time to reread the section to be sure you know how we got from start to finish.
a.) So far, we have been able to calculate the work W_{F} a single force \boldsymbol{F} does on a moving body. It isn't too hard to see that the total, net work $W_{n e t}$ due to all the forces acting on a body will equal the sum of the individual bits of work done by the individual forces.

What might not be so obvious is that there is another way to get that net work quantity. How so? We could determine the net force $\boldsymbol{F}_{\text {net }}$ acting on the body and use it in our work definition. Doing so yields:

$$
\mathrm{W}_{\mathrm{net}}=\int \mathbf{F}_{\mathrm{net}} \cdot \mathrm{~d} \mathbf{r} .
$$

b.) By Newton's Second Law, the net force on an object will numerically equal the vector $m \boldsymbol{a}=m(d \boldsymbol{v} / d t)$. If, for ease of calculation, we assume that the net force and the displacement $d \boldsymbol{r}$ are both in the \boldsymbol{i} direction, we can write the dot product associated with the work definition as:

$$
\begin{align*}
W_{\text {net }} & =\int \mathbf{F} \bullet d \mathbf{r} \\
& =\int(m \mathbf{a}) \bullet d \mathbf{r} \\
& =\int\left[m \frac{\mathrm{~d}(\mathrm{v})}{\mathrm{dt}} \mathbf{i}\right] \cdot[(\mathrm{dx}) \mathbf{i}] \\
& =\mathrm{m} \int\left(\frac{\mathrm{dv}}{\mathrm{dt}}\right) \mathrm{dx} \tag{EquationA}
\end{align*}
$$

c.) As the velocity term is time dependent (otherwise, we wouldn't be able to determine $d v / d t$), we would like to write the displacement term $d x$ in terms of time, also. To do so, note that the rate at which the position changes with time (i.e., $d x / d t$) times the time interval $d t$ over which the change occurs, yields the net change in position $d x$. Put more succinctly:

$$
\mathrm{dx}=\left[\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)(\mathrm{dt})\right] .
$$

d.) Substituting this into Equation A and manipulating as only physicists will do (i.e., after canceling out selected $d t$ terms), we get:

$$
\begin{aligned}
W_{\text {net }} & =m \int\left(\frac{d v}{d t}\right)\left[\left(\frac{d x}{d t}\right) d t\right] \\
& =m \int d v\left[\frac{d x}{d t}\right]
\end{aligned}
$$

e.) Noticing that $d x / d t$ is the velocity v of the body, and taking the limits to be from some velocity v_{1} to a second velocity v_{2}, we can rewrite, then integrate this expression as:

$$
\begin{aligned}
W_{\text {net }} & =m \int_{v_{1}}^{v_{2}}(v) d v \\
& =m\left(\frac{v^{2}}{2}\right)_{v_{1}}^{v_{2}} \\
& =\left(\frac{1}{2}\right) m\left(v_{2}\right)^{2}-\left(\frac{1}{2}\right) m\left(v_{1}\right)^{2} .
\end{aligned}
$$

f.) This equation, $W_{n e t}=(1 / 2) m v_{2}{ }^{2}-(1 / 2) m v_{1}{ }^{2}$, is called the Work/Energy Theorem. It is the bottom line for this section.
2.) The quantity (1/2)mv ${ }^{2}$ has been deemed important enough to be given a special name. It is called the Kinetic Energy of a body of mass m moving with velocity v. Its units are $(\mathrm{kg})(\mathrm{m} / \mathrm{s})^{2}$, or joules--the same units as work (as expected).
a.) OBSERVATION: Something is said to have energy if it has the ability to do work on another "something."
i.) Example--a car traveling at $30 \mathrm{~m} / \mathrm{s}$: A car has energy associated with its motion (i.e., kinetic energy). If this is not obvious, imagine stepping in front of one traveling down the road. Any damage done to you by the car will be due to the fact that the car has energy wrapped up in its motion and, as a consequence, has the ability to do work on you.
ii.) Example--a sound wave: If a sound wave didn't carry energy, it wouldn't have the ability to do work on the hairs in your ears which, when moved, produce the electrical signals your brain translates into sound.
iii.) In both of the cases cited above, energy is associated with the ability to do work on something else.
b.) Kinetic Energy--Example \#1: What must the magnitude of the velocity of a 1000 kg car be if it is to have the same kinetic energy as a 2 gram bullet traveling at $300 \mathrm{~m} / \mathrm{s}$?

Solution:

$$
\begin{aligned}
\mathrm{KE}_{\mathrm{b}} & =(1 / 2) \mathrm{m}_{\mathrm{b}} \mathrm{v}_{\mathrm{b}}^{2} \\
& =(1 / 2)(.002 \mathrm{~kg})(300 \mathrm{~m} / \mathrm{s})^{2} \\
& =90 \text { joules. }
\end{aligned}
$$

If $K E_{b}=K E_{c}$:

$$
\begin{array}{cc}
& (1 / 2) \quad \mathrm{m}_{\mathrm{c}} \quad \mathrm{v}_{\mathrm{c}}^{2}=90 \text { joules } \\
\Rightarrow \quad(1 / 2)(1000 \mathrm{~kg})\left(\mathrm{v}_{\mathrm{c}}\right)^{2}=90 \text { joules } \\
\Rightarrow \quad \mathrm{v}_{\mathrm{c}}=.42 \mathrm{~m} / \mathrm{s}
\end{array}
$$

c.) Kinetic Energy--Example \#2: If one triples a body's velocity, how does the body's kinetic energy change?

Solution:

$$
\begin{aligned}
\mathrm{KE}_{1} & =(1 / 2) \mathrm{mv}_{1}^{2} \\
\mathrm{KE}_{2} & =(1 / 2) \mathrm{m}\left(3 \mathrm{v}_{1}\right)^{2} \\
& =9\left[(1 / 2) \mathrm{m}\left(\mathrm{v}_{1}\right)^{2}\right] .
\end{aligned}
$$

As would be expected when the kinetic energy is proportional to the square of the velocity, tripling the speed increases the kinetic energy by a factor of three-squared, or nine.
3.) Back to the Work/Energy Theorem: whenever a net amount of work is done on a body, the body will either acquire or lose energy. That change will ALWAYS show itself as a change in the kinetic energy of the body.

More succinctly: the net work done on a body will always equal the change of the body's kinetic energy.
4.) Example: At a given instant, a 2 kg mass moving to the right over a frictional surface has a force $F=5 \mathrm{nts}$ applied to the left at an angle $\theta=30^{\circ}$ below the horizontal (see Figure 6.9). The

average frictional force acting on the box is $f_{k}=1.5 n t s$. If the block is initially moving with velocity $9 \mathrm{~m} / \mathrm{s}$, how fast will it be moving after traveling a distance 4 meters?

Note: You could have been given μ_{k} and been expected to use N.S.L. to determine the normal force N required to use $f_{k}=\mu_{k} N$. That twist hasn't been included here for the sake of simplicity, but it is a perfectly legitimate problem for your next test.
a.) Someone well-familiar with the work/energy theorem would do the problem as shown below (if the pieces making up the expressions aren't self explanatory, a derivation of each follows in Part b):

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{net}}=\Delta \mathrm{KE} \\
& \mathrm{~W}_{\mathrm{F}}+\quad \mathrm{W}_{\mathrm{f}}= \\
&(-\mathrm{Fd} \cos \theta)+\quad\left(-\mathrm{f}_{\mathrm{k}} \mathrm{~d}\right)=\quad(1 / 2) \mathrm{mv}_{2}{ }^{2} \quad \Delta \mathrm{KE} \\
&-(5 \mathrm{nts})(4 \mathrm{~m})(.866)-(1.5 \mathrm{nts})(4 \mathrm{~m})=(1 / 2)(2 \mathrm{~kg})\left(\mathrm{v}_{2}\right)^{2}-(1 / 2)(2 \mathrm{~kg})(9 \mathrm{~m} / \mathrm{s})^{2} \\
& \Rightarrow \quad \mathrm{v}_{2}=7.59 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

b.) The following shows how each quantity used in the above equations was derived:
i.) The Work/Energy Theorem states that:

$$
\mathrm{W}_{\mathrm{net}}=\Delta \mathrm{KE} .
$$

ii.) The left-hand side of the equation is equal to the sum of all the work done by all the forces acting on the block. The f.b.d. shown in Figure 6.10 identifies those forces. Note that the work done by the normal force will always equal zero (the line of motion and the line of the normal are perpendicular to one another). The work due to gravity will, in this

$$
\begin{array}{|l|}
\hline \text { f.b.d. on } \mathrm{m} \\
\hline
\end{array}
$$

 case, also equal zero for the same reason.
iii.) That leaves $W_{n e t}=W_{F}+W_{f_{k}}$.
iv.) Using the definition of work, we get:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{F}} & =\mathbf{F} \cdot \mathbf{d} \\
& =|\mathbf{F}||\mathbf{d}| \cos \phi \\
& =(\mathrm{F})(\mathrm{d}) \cos \left(180^{\circ}-\theta\right) \\
& =-(\mathrm{F})(\mathrm{d}) \cos \theta .
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{W}_{\mathrm{f}_{\mathrm{k}}} & =\mathbf{f}_{\mathrm{k}} \cdot \mathbf{d} \\
& =|\mathbf{F}| \mathbf{d} \mid \cos \phi \\
& =\left(\mathrm{f}_{\mathrm{k}}\right)(\mathrm{d}) \cos 180^{\circ} \\
& =-\mathrm{f}_{\mathrm{k}} \mathrm{~d} .
\end{aligned}
$$

Note 1: The angle between the line of motion and the force \boldsymbol{F} is not so ob-vious--we really did need to write out the work derivation for that force.

Note 2: Friction pulls energy out of the system, hence the negative work quantity. That energy is usually dissipated as heat.
v.) Putting it all together, we get:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{net}} & =\mathrm{W}_{\mathrm{F}}+\mathrm{W}_{\mathrm{f}_{\mathrm{k}}} \\
& =(-\mathrm{Fd} \cos \theta)+\left(-\mathrm{f}_{\mathrm{k}} \mathrm{~d}\right)
\end{aligned}
$$

vi.) Returning to the Work/Energy theorem:

$$
\begin{array}{cc}
\mathrm{W}_{\text {net }} & =\Delta \mathrm{KE} \\
\Rightarrow \quad(-\mathrm{Fd} \cos \theta)+\left(-\mathrm{f}_{\mathrm{k}} \mathrm{~d}\right) & =(1 / 2) \mathrm{mv}_{2}^{2}-(1 / 2) \mathrm{mv}_{1}^{2}
\end{array} \quad \text { (Equation A) }
$$

vii.) We know everything except v_{2}. Solving for that variable, assuming $F=5$ newtons, $f_{k}=1.5$ newtons, $\theta=30^{\circ}, d=4$ meters, $m=2$ $k g$, and $v_{1}=9 \mathrm{~m} / \mathrm{s}$, we get:

$$
\begin{gathered}
(-\mathrm{Fd} \cos \theta)+\left(-\mathrm{f}_{\mathrm{k}} \mathrm{~d}\right)=(1 / 2) \mathrm{mv}_{2}{ }^{2}-(1 / 2) \mathrm{mv}_{1}^{2} \\
-(5 \mathrm{nts})(4 \mathrm{~m})(.866)-(1.5 \mathrm{nts})(4 \mathrm{~m})=(1 / 2)(2 \mathrm{~kg})\left(\mathrm{v}_{2}\right)^{2}-(1 / 2)(2 \mathrm{~kg})(9 \mathrm{~m} / \mathrm{s})^{2} \\
\Rightarrow \quad \mathrm{v}_{2}=7.59 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Note 1: Do not memorize the final form of the above equation. The key is to understand how we got it. It is the approach that is important here, not the final result!

Note 2: Going back for another look at the original formulation of the problem (i.e., the way you ought to present a test problem should you be asked to use the work/energy theorem to solve a problem):

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{net}}=\Delta \mathrm{KE} \\
& \mathrm{~W}_{\mathrm{F}}+\quad \mathrm{W}_{\mathrm{f}}= \\
&(-\mathrm{Fd} \cos \theta)+\quad\left(-\mathrm{f}_{\mathrm{k}} \mathrm{~d}\right)=\quad(1 / 2) \mathrm{mv}_{2}{ }^{2} \quad \Delta \mathrm{KE} \\
&-(5 \mathrm{nts})(4 \mathrm{~m})(.866)-(1.5 \mathrm{nts})(4 \mathrm{~m})=(1 / 2)(2 \mathrm{~kg})\left(\mathrm{v}_{2}\right)^{2}-(1 / 2)(2 \mathrm{~kg})(9 \mathrm{~m} / \mathrm{s})^{2} \\
& \Rightarrow \quad \mathrm{v}_{2}=7.59 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Note 3: For a moment, think about the approach. It allows you to relate the total amount of energy-changing work $W_{\text {net }}$ done on the body to the way the body's energy-of-motion (its kinetic energy) changes. Forces come into play in calculating the "work" part of the relationship. That means N.S.L. is still important (you could need it to determine an expression for the magnitude of an unknown force), but the main thrust is wrapped up in the question, "How does the system's ENERGY change?"

Note 4: Although the Work/Energy Theorem is important, we will shortly be using it to derive an even more important relationship. We haven't yet gotten to the "bottom line" of this approach.

E.) Conservative Forces:

1.) Background: A body of mass m moves from y_{1} (call this Position 1) to y_{2} (call this Position 2) with a constant velocity (see Figure 6.11). How much work does

Note: There are at least two forces acting on the gravity do on the body as it executes the motion?

FIGURE 6.11 body in this case, one provided by gravity and one
provided by an outside agent like yourself. Our only interest in this problem is in the work gravity does.
a.) Noting that the angle between the line of the gravitational force and the line of the displacement vector is 0°, we can use our definition of work to write:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{gr}} & =\mathbf{F}_{\mathrm{g}} \cdot \mathbf{d} \\
& =|\mathbf{F}||\mathbf{d}| \cos 0^{\circ} \\
& \left.=(\mathrm{mg})\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)(1) \quad \text { (Equation } \mathrm{A}\right)
\end{aligned}
$$

which could be written:

$$
\begin{aligned}
& =-(\mathrm{mg})\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) \\
& =-(\mathrm{mg})(\Delta \mathrm{y}) .
\end{aligned}
$$

Note: By definition, Δy is the final height y_{2} minus the initial height y_{1}. The last two steps of the above derivation were included to make use of this fact (this particular notation will come in handy later).
2.) Let us now replay the situation with a small alteration. Assume now that the block moves from Point 1 to Point 2 following the path outlined in Figure 6.12. How much work does gravity do on the block in this situation?
a.) Noting that the total work gravity does will equal the work done by gravity through each section of the displacement, we get:

FIGURE 6.12

$$
\mathrm{W}_{\mathrm{gr}}=\mathrm{W}_{\mathrm{d}_{\mathrm{A}}}+\mathrm{W}_{\mathrm{d}_{\mathrm{B}}}+\mathrm{W}_{\mathrm{d}_{\mathrm{C}}}+\mathrm{W}_{\mathrm{d}_{\mathrm{D}}}
$$

b.) We know that the distance $d_{C}=d_{A}+\left(y_{1}-y_{2}\right)$. Using that and the definition of work, we can write:

$$
\mathrm{W}_{\mathrm{gr}}=(\mathrm{mg})\left(\mathrm{d}_{\mathrm{A}}\right) \cos 180^{\circ}+(\mathrm{mg})\left(\mathrm{d}_{\mathrm{B}}\right) \cos 90^{\circ}+(\mathrm{mg})\left(\mathrm{d}_{\mathrm{A}}+\mathrm{y}_{1}-\mathrm{y}_{2}\right) \cos 0^{\circ}+(\mathrm{mg})\left(\mathrm{d}_{\mathrm{D}}\right) \cos 90^{\circ} .
$$

c.) Setting $\cos 180^{\circ}=-1, \cos 90^{\circ}=0$, and $\cos 0^{\circ}=1$, this becomes:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{gr}} & =-(\mathrm{mg})\left(\mathrm{d}_{\mathrm{A}}\right)+(\mathrm{mg})\left(\mathrm{d}_{\mathrm{A}}+\mathrm{y}_{1}-\mathrm{y}_{2}\right) \\
& =-(\mathrm{mg})\left(\mathrm{d}_{\mathrm{A}}\right)+(\mathrm{mg})\left(\mathrm{d}_{\mathrm{A}}\right)+(\mathrm{mg})\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \\
& =+(\mathrm{mg})\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \\
& =-(\mathrm{mg})\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) .
\end{aligned}
$$

d.) Notice that this is the same amount of work gravity did when the body followed the first path. In fact, no matter what path the body takes in moving from Point 1 to Point 2, the amount of work gravity does on the body will always be the same.

Put another way, the amount of work gravity does on a body as the body moves from one point to another in the gravitational field is PATH INDEPENDENT. FORCE FIELDS THAT ACT THIS WAY ARE CALLED CONSERVATIVE FORCE FIELDS.
e.) A corollary to this path independence observation is the fact that the amount of work a conservative force field does on a body that moves around a closed path in the field will always be ZERO!

Note: "Moving around a closed path" means the body ends up back where it started.
i.) Reasoning? Consider a body that moves upward a vertical distance d. The work gravity does on the body will be $-m g d$ (negative because the angle between the displacement vector and the gravitational force is 180°). When the body is brought back down to its original position, the work gravity does is $+m g d$. The total work gravity does on the body as it moves through the round trip is ($-m g d+$ $m g d$), or ZERO.

Gravity is a conservative force field.
f.) An example of a force field that is not conservative is friction. Common sense dictates that the further a body moves under the influence of friction, the more work friction will do on the body. As an example, anyone who has ever dragged a fingernail across a chalkboard knows that the further one drags, the more work friction does on his fingernails (and the more his listening friends will want to murder him).

From another perspective, frictional forces always oppose the direction of relative motion between two bodies. This means that a frictional force will either do all negative work or all positive work (99% of the time it's negative), depending upon the situation. That, in turn, means that the work due to friction on a body moving around a closed path can never equal zero.

Friction is a non-conservative force.

Note: For those of you who are wondering if there are other kinds of nonconservative force fields, all time-varying force fields qualify. You will not be asked to deal with time-varying fields until much later; the only nonconservative force you will have to worry about for now is friction.

F.) Preamble to the Gravitational Potential Energy Function:

Note 1: We are about to consider a concept you have heard about in past science classes but that was most probably never addressed in a truly rigorous way. To eliminate as much intellectual stress as possible, my suggestion is that you forget everything you have ever been told about potential energy and start from scratch with the presentation that follows.

Note 2: You will not be held responsible for duplicating any of the material you are about to read except the bottom line. BUT, if you don't understand the following material you won't understand the bottom line, and if you don't understand the "bottom line" you will undoubtedly find yourself totally lost later. Therefore, read the next section, not for memorization purposes but for content. Follow each step as it comes without projecting ahead. When you finally get to the end-result, read back over the material to be sure you know what assumptions were made in proceeding to the endpoint.
1.) Consider a conservative force field--gravity, for instance. A body of mass m moves from y_{1} (call this Position 1) to y_{2} (call this Position 2) with a constant velocity. How much work does the gravitational force field do on the body as the body so moves?
a.) This was the question posed at the beginning of the
"Conservative Forces" section. The solution was found to be:

$$
\left.\mathrm{W}_{\mathrm{gr}}=-(\mathrm{mg})\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) \quad \text { (Equation } \mathrm{A}\right)
$$

b.) One of the important conclusions drawn from that section was the observation that as a body moves from Point 1 to Point 2 in a gravitational field, the work done by the field is not dependent upon the path taken. Gravity is a conservative force.
c.) With that in mind, let's consider a novel idea. If the path counts for nothing--if the endpoints are all that are important when determining the work gravity does--might it not be possible to somehow define a number N_{1} that can be attached to Point 1 , and a number N_{2} that can be attached to Point 2, and cleverly make them such that the difference between them would yield the amount of work done by gravity as the body proceeds from Point 1 to Point 2?
d.) This surely is a strange idea, but whether you see the usefulness of it or not, could it be done?

The answer is "yes."
e.) Example: Figure 6.13 shows just such a possible situation. Assuming the numbers have been chosen appropriately, the work done on the body due to gravity as the body goes from Points 1 to 2 should be:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{gr}} & =\left(\mathrm{N}_{2}-\mathrm{N}_{1}\right) \\
& =[(12 \text { joules })-(25 \text { joules })] \\
& =-13 \text { joules. }
\end{aligned}
$$

FIGURE 6.13
f.) There is only one difficulty with this.

We have assigned zero to ground level making all numbers above ground level increase with elevation. That means that when a body moves from a higher (big number) position to a lower (small number) position, the difference between the second number and first number $\left(N_{l o w}-N_{h i}\right)$ will be negative (just as we found in our example). The problem here is that if we proceed from high to low (i.e., move in the direction of $m g$), the work gravity does should be positive!

To make our scheme work, we need to modify our original model by re-defining the "numbers expression." We will do so by putting a negative sign in front of the relationship. This yields:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{gr}} & \left.=-\left(\mathrm{N}_{2}-\mathrm{N}_{1}\right) \quad \text { (Equation } \mathrm{B}\right) \\
& =-[(12 \text { joules })-(25 \text { joules })] \\
& =+13 \text { joules. }
\end{aligned}
$$

g.) With our modification, we now have numbers attached to our initial and final points that, when correctly manipulated, give us the work done by gravity as the body moves from Point 1 to Point 2.

Note: Kindly notice that we can do this only because the gravitational force is conservative and, hence, the work done due to gravity is path independent. If the work done depended upon the path taken, none of this would make any sense at all.
h.) It would be nice to have some handy mathematical function that would allow us to define our N numbers. Fortunately, we already have such a function for gravity. Using the definition of work, the work done by gravity on a body moving from Point 1 to Point 2 in a gravitational field is:

$$
\mathrm{W}_{\mathrm{gr}}=-\left(\mathrm{mgy}_{2}-\mathrm{mgy}_{1}\right) .
$$

We determined this expression earlier.
i.) By comparing this equation with our "number expression":

$$
\mathrm{W}_{\mathrm{gr}}=-\left(\mathrm{N}_{2}-\mathrm{N}_{1}\right),
$$

we find by inspection that:

$$
\mathrm{N}_{2}=\mathrm{mgy}_{2} \quad \text { and } \quad \mathrm{N}_{1}=\mathrm{mgy}_{1}
$$

j.) Written in general (i.e., written as mgy where y is the vertical distance above some arbitrarily chosen zero-height level--the ground in our example), this function is important enough to be given a special name. It is called the "gravitational potential energy" function, normally characterized as U_{g}.
k.) Bottom Line: Although we have done this analysis using a gravitational force field, EVERY conservative force field has a potential energy function associated with it. Furthermore, there is a formal, Calculus-driven approach for deriving potential energy functions which will be presented shortly.

Whether you are given a potential energy function or have to derive it, understand that when a body moves through a conservative force field the amount of work done by the field as the body moves from Point 1 to Point 2 will always be:

$$
\begin{aligned}
\mathrm{W}_{\text {field }} & =-\left(\mathrm{U}_{\mathrm{pt.} 2}-\mathrm{U}_{\mathrm{pt} .1}\right) \\
& =-\Delta \mathrm{U} .
\end{aligned}
$$

This is the bottom line on potential energy.

G.) Comments and Problems--Potential Energy Functions in General:

1.) Gravitational potential energy is not an absolute quantity.
a.) Consider the table and chalk shown in Figure 6.14. If we take y to be measured from the table's top (i.e., y_{1} in the sketch), we are safe in saying that the amount of potential energy the chalk has is equal to $m g y_{1}$. If we want to determine the amount of work gravity does on the chalk as it rises to a second point at y_{2}, we can use the above-derived expression relating gravitational potential energy to the work gravity does, and get:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{gr}} & =-\Delta \mathrm{U}_{\mathrm{gr}} \\
& =-\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right) \\
& =-\left(\mathrm{mgy}_{2}-\mathrm{mgy}_{1}\right) .
\end{aligned}
$$

b.) Could we have used
the floor as the zero potential energy level, making all y measurements from there?

ABSOLUTELY! The chalk would be assigned an initial potential energy value of $m g y_{3}$ (see Figure 6.15 on the next page), etc., and the work calculation would proceed as before:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{gr}} & =-\Delta \mathrm{U}_{\mathrm{gr}} \\
& =-\left(\mathrm{U}_{4}-\mathrm{U}_{3}\right) \\
& =-\left(\mathrm{mgy}_{4}-\mathrm{mgy}_{3}\right) .
\end{aligned}
$$

c.) The amount of work gravity does as the chalk rises to its new position can be determined correctly using either approach (notice that $y_{2}-y_{1}$ is numerically equal to $y_{4}-y_{3}$).

Why does this seemingly nonsensical situation exist? Because what is important is not the amount of gravitational potential energy an object has when at a particular point. What is important is the change of the gravitational potential energy of a body as it moves from one
 point to another. That is what allows us to determine the amount of work done on the body as it moves through the gravitational field. Thus, work determination is the ONLY USE you will ever have for potential energy functions . . . ever.
2.) Although most students associate potential energy with gravitational potential energy, there are actually many other conservative force fields. For instance, an ideal spring produces a force that is, at least theoretically, conservative. All conservative forces have potential energy functions associated with them.

Their use?
If you want to know how much work a conservative force field does on a body moving from one point to another within the field, and if you know the field's potential energy function, the work done by the field will always equal minus the change of the potential energy function between the start and end points, or:

$$
\mathrm{W}_{\text {cons.force }}=-\Delta \mathrm{U} \text {. }
$$

3.) A Work/Energy-Theorem, Potential-Energy Example Problem: A plane oriented at 30° above the horizontal moves at $300 \mathrm{~m} / \mathrm{s}$. It is 1200 meters above the ground when a coke bottle becomes free and sails out of the window
a' la the movie The Gods Must Be Crazy (see
Figure 6.16). Neglecting air friction, how fast will the bottle be moving just before it hits the ground?
a.) The work/energy theorem states that the net work done on a body must equal the body's change in kinetic energy $(\Delta K E)$. Mathematically, this is stated as:

$$
\mathrm{W}_{\mathrm{net}}=\Delta \mathrm{KE} .
$$

b.) In this case, the $W_{n e t}$ consists solely

FIGURE 6.16 we can write:
$\mathrm{W}_{\mathrm{g}}=(1 / 2) \mathrm{mv}_{2}{ }^{2}-(1 / 2) \mathrm{mv}_{1}{ }^{2}$.
c.) If we had to calculate the work due to gravity using only the definition, the task would require Calculus (the bottle's direction of motion is constantly changing, which means the angle between the gravitational force and the displacement is constantly changing--see Figure 6.17) which would be nasty. Fortunately for us, we can easily determine the work
 of the work done by gravity W_{g}. Coupling this with the fact that there is a change in the kinetic energy $\Delta K E=(1 / 2) m v_{2}^{2}-(1 / 2) m v_{1}^{2}$, gravity does in this situation because:
i.) We know the potential energy function for gravity is mgy; and
ii.) We know that:

$$
\mathrm{W}_{\mathrm{g}}=-\Delta \mathrm{U}_{\mathrm{g}}=-\left(\mathrm{U}_{2, \mathrm{~g}}-\mathrm{U}_{1, \mathrm{~g}}\right)
$$

d.) Utilizing these facts, we find:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{g}} & =(1 / 2) \mathrm{mv}_{2}^{2}-(1 / 2) \mathrm{mv}_{1}^{2} \\
-\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right) & =(1 / 2) \mathrm{mv}_{2}^{2}-(1 / 2) \mathrm{mv}_{1}^{2} \\
-\left(\mathrm{mgh}_{2}-\mathrm{mgh}_{1}\right) & =(1 / 2) \mathrm{mv}_{2}^{2}-(1 / 2) \mathrm{mv}_{1}^{2}
\end{aligned}
$$

e.) Solving for v_{2} yields:

$$
\mathrm{v}_{2}=\left[\mathrm{v}_{1}^{2}-2\left(\mathrm{gh}_{2}-\mathrm{gh}_{1}\right)\right]^{1 / 2} .
$$

f.) Putting in the numbers yields:

$$
\begin{aligned}
\mathrm{v}_{2} & =\left[(300 \mathrm{~m} / \mathrm{s})^{2}-2\left[\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0 \mathrm{~m})-\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1200 \mathrm{~m})\right]\right]^{1 / 2} \\
& =336.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Note: As usual, memorizing this result is a waste of time. What is important is the technique involved. Whenever you need to know how much work a conservative force does on a body moving through its force field, that quantity will always equal $-\Delta U$, where U is the potential energy function associated with the field.

H.) Deriving the Potential Energy Function for a Known Force Field:

1.) We created the idea of a potential energy function out of the need to easily determine the amount of work gravity does as a body moves from one point to another in a gravitational field. We then concluded that any conservative force can have a potential energy function associated with it. The only requirement? That:

$$
\mathrm{W}_{\text {cons.fld. }}=-\Delta \mathrm{U} \quad(\text { Equation } \mathrm{A})
$$

where the symbol U was used to denote the potential energy function associated with the conservative force field with which we happen to be dealing.
2.) It is possible to use the above expression to design an approach by which the potential energy function of a known, conservative force field can be derived. Specifically:
a.) In general, the work done by any force is:

$$
\mathrm{W}=\int \mathrm{dW}=\int \mathbf{F} \cdot \mathrm{d} \mathbf{r} \quad(\text { Equation } \mathrm{B}) .
$$

b.) Putting our two work expressions together (i.e., Equation A and Equation B), we get:

$$
\begin{aligned}
\mathrm{W}_{\text {cons.fld. }} & =-\Delta \mathrm{U} \\
& =\int \mathbf{F}_{\text {cons.force }} \cdot \mathrm{d} \mathbf{r} .
\end{aligned}
$$

More succinctly, if a body is moving in the x direction from coordinate x_{1} to coordinate x_{2}, we can write:

$$
\left[\mathrm{U}\left(\mathrm{x}_{2}\right)-\mathrm{U}\left(\mathrm{x}_{1}\right)\right]=-\int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}} \mathbf{F}_{\text {cons.force }} \bullet \mathrm{d} \mathbf{r}
$$

where the differential displacement is $d \boldsymbol{r}=d x \boldsymbol{i}$ and the integral must be evaluated (as shown) between x_{1} and x_{2}.

Note: In advanced physics books, this relationship is expressed in a more general expression:

$$
\left[\mathrm{U}\left(\mathbf{r}_{2}\right)-\mathrm{U}\left(\mathbf{r}_{1}\right)\right]=-\int \mathbf{F}_{\mathrm{cons} . \mathrm{fld}} \cdot \mathrm{~d} \mathbf{r},
$$

where the differential displacement is $d \boldsymbol{r}=d x \boldsymbol{i}+d y \boldsymbol{j}+d z \boldsymbol{k}$ and the integral must be evaluated between the generalized, two or three dimensional coordinates r_{1} and \boldsymbol{r}_{2}. Also, the symbol used for potential energy in some books is $P E$ instead of U.
c.) How does this help us define a potential energy function? Being clever, we can set x_{1} equal to the coordinate at which the potential energy is to equal zero, then set x_{2} to any arbitrary coordinate x. In that way, we end up with an integral we can do (we know \boldsymbol{F}) that has limits we can evaluate, and that is equal to $U(x)-0$ or, simply, $U(x)$.

That is exactly what we want--a function that is general and that reflects the potential energy of the system at any coordinate x.
3.) An example: The gravitational force field close to the earth's surface applies a force equal to -mgj newtons to any body placed in the field. What is the potential energy function for this force field?
a.) The first thing to decide is where the potential energy function is to equal zero. IN MOST CASES, THE POTENTIAL ENERGY FUNCTION IS DEFINED AS ZERO WHERE THE FORCE FUNCTION, ITSELF, EQUALS ZERO. The only cases in which this isn't true are cases in which the force is a constant (hence, the force has no place where it is zero). Gravity is one such force. That means there is no preferred zero potential energy level for gravity close to the earth's surface. As such, we will arbitrarily choose ground level (i.e., $y=0$) to be the zero level and work from there.
b.) Defining $U(y=0)=0$, we can use our definition of potential energy to write:

$$
\begin{aligned}
& {[U(y)-U(y=0)]=-\int \mathbf{F} \cdot d \mathbf{r}} \\
& \Rightarrow \quad U(y)-0=-\int_{y=0}^{y}[-m g \mathbf{j}] \bullet[d x \mathbf{i}+d y \mathbf{j}+d z \mathbf{k}] \\
& \Rightarrow \quad \mathrm{U}(\mathrm{y})=\int_{\mathrm{y}=0}^{\mathrm{y}}(\mathrm{mg}) \mathrm{dy} \\
& =\left.m g y\right|_{y=0} ^{y} \\
& =\mathrm{mgy}
\end{aligned}
$$

Note: $U(y=0)$ is ZERO, not because $y=0$ but because we have chosen to start our work calculation at the place where the potential energy has been defined as ZERO. In this case, that just happens to be at the coordinate $y=0$.
c.) This is exactly the potential energy function we determined using the hand-waving arguments employed in the previous section.
4.) A more challenging example: The gravitational force field between any two bodies varies depending upon how massive the bodies are and how far their centers of mass are from one another. Newton deduced this general force function for gravity as:

$$
\mathbf{F}=\left[-\mathrm{G}\left(\mathrm{~m}_{1} \mathrm{~m}_{2}\right) / \mathrm{r}^{2}\right] \mathbf{r}
$$

where G is called the universal gravitational constant, m_{1} and m_{2} are the masses in question, r is the distance between their mass centers, and r is a unit vector in the radial direction (gravitational forces are always directed along a line between the two bodies--i.e., in a radial direction). The question? What is the potential energy function for this force field?
a.) For simplicity, assume the gravitational force is pointed in the x direction, making

$$
\mathbf{F}=\left[-\mathrm{G}\left(\mathrm{~m}_{1} \mathrm{~m}_{2}\right) / \mathrm{x}^{2}\right] \mathbf{i}
$$

b.) Having made that simplification, the first thing to decide is where the potential energy function is equal to zero. Using the criterion suggested previously, the potential energy should be zero where the force function is equal to zero. That occurs at $x=\infty$.

Note: Remember what we are essentially doing when we use this approach? We are calculating the amount of work our force field does (i.e., $\int \boldsymbol{F} \cdot d \boldsymbol{r}$) as we move from the zero potential energy point to an arbitrary point within the field. In this case, we are moving from $x=\infty$ to some point at coordinate x.
c.) Defining $U(x=\infty)=0$, we can use our definition of potential energy to write:

$$
\begin{aligned}
{[U(x)-U(x=\infty)] } & =-\int \mathbf{F} \bullet d \mathbf{r} \\
\Rightarrow[U(x)-0] & =-\int\left[-G \frac{m_{1} m_{2}}{x^{2}} \mathbf{i}\right] \cdot[d x \mathbf{i}+d y \mathbf{j}+d z \mathbf{k}] \\
& =-\int_{x=\infty}^{x}\left[-G \frac{m_{1} m_{2}}{x^{2}}\right] d x \\
& =\left(G m_{1} m_{2}\right)\left[\frac{-1}{x}\right]_{x=\infty}^{x} \\
& =\left(G m_{1} m_{2}\right)\left[\left(\frac{-1}{x}\right)-\left(\frac{-1}{\infty}\right)\right] \\
& =-G \frac{m_{1} m_{2}}{x}
\end{aligned}
$$

d.) This is the potential energy function for gravitational fields anywhere. Does it work? Let's see. According to the theory, we should be able to calculate the amount of work gravity does as a body moves from one point to another in a conservative force field using:

$$
\mathrm{W}=-\Delta \mathrm{U}
$$

Assume your mass is 85 kg . You're in an elevator moving upward from ground level to a position 200 meters above the ground. How much work does gravity do as you so move?
i.) Using the gravitational potential energy function we derived for situations near the surface of the earth (i.e., $U_{m g, n e a r}=m g y$, where we can assume ground level is the zero potential energy level), the amount of work done by gravity is found to be:

$$
\begin{array}{rlc}
\mathrm{W}_{\text {grav }} & =-\left[\begin{array}{lc}
\mathrm{U}\left(\mathrm{y}_{2}=200\right) & \left.-\mathrm{U}\left(\mathrm{y}_{1}=0\right)\right] \\
& =-\left[\begin{array}{cc}
\mathrm{mgy}_{1}
\end{array}\right] \\
& =-\left[(85 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(200 \mathrm{~m})-\right. \\
& =-166,600 \text { joules. }
\end{array}\right]
\end{array}
$$

ii.) We would like to do the same problem using the general potential energy function for gravity (i.e., $-G m_{1} m_{2} r^{2}$, where r is the distance between the center of masses of the interacting objects--in this case, you and the earth). To do so, note that:
--the universal gravitational constant $G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$;
--the mass of the earth is $m_{e}=5.98 \times 10^{24} \mathrm{~kg}$;
--the radius of the earth is $r_{e}=6.37 \times 10^{6} \mathrm{~m}$.
iii.) Remember how potential energy functions are used. If you want the amount of work done by a conservative field as a body moves from one point to another in the field, evaluate the potential energy function for the field AT THE START POINT and AT THE END POINT, then take minus the difference of that amount. The value you end up with will be the work done by the field during the motion. Up until now, all you have worked with has been the simple version of gravitational potential energy--a function with an adjustable zero level. You are about to use a potential energy function with a fixed zero point (remember, $U=0$ at infinity for this function). Even though you may be in the habit of treating ground level as the zero point, that isn't true of this function! With that in mind:
iv.) If we let r_{e} be the distance between the earth's center and your center of mass when standing on the earth's surface (this is essentially the radius of the earth), then $r_{e}+200$ will be the distance between your center of mass when at 200 meters above the earth's surface. We can write:

$$
\begin{aligned}
\mathrm{W}_{\text {grav }} & =-\left[\mathrm{U}\left(\mathrm{r}_{\mathrm{e}}+200\right)\right. \\
& =-\left[\left[-\mathrm{Gm}_{\mathrm{e}} \mathrm{~m}_{\text {you }} /\left(\mathrm{r}_{\mathrm{e}}+200\right)\right]-\left[-\mathrm{Gm}_{\mathrm{e}} \mathrm{~m}_{\mathrm{you}} /\left(\mathrm{r}_{\mathrm{e}}\right)\right]\right] .
\end{aligned}
$$

v.) Pulling out the constants, eliminating the units for the sake of space, and wholly ignoring significant figures, this becomes:

$$
\begin{aligned}
\mathrm{W}_{\text {grav }} & =\mathrm{G} \quad \mathrm{~m}_{\mathrm{e}} \mathrm{~m}_{\text {you }}\left[1 /\left(\mathrm{r}_{\mathrm{e}}+200\right)-1 / \quad\left(\mathrm{r}_{\mathrm{e}}\right)\right] \\
& =\left(6.67 \times 10^{-11}\right)\left(5.98 \times 10^{24}\right)(85)[1 /(6,370,200)-1 /(6,370,000)] \\
& =5322220652-5322387755 \\
& =-167,103 \text { joules. }
\end{aligned}
$$

vi.) Using the near Earth potential energy function in Part d-i above, we found that gravity did $-166,600$ joules of work. If we had not used rounded values for G, r_{e}, and m_{e}, these two numbers would have been the same.
vii.) Bottom Line: Our approach for determining potential energy functions generates functions that work as expected. LEARN THE APPROACH!

I.) The Potential Energy Function for an Ideal Spring:

1.) An ideal spring loses no energy as it oscillates back and forth. The amount of work such springs do through one full cycle is zero, which is to say that the force they provide is a conservative one. As such, we can derive a potential energy function for an ideal spring using the approach outlined above.
2.) The position of a body attached to an ideal spring is measured from the system's equilibrium position (i.e., the position at which the force on the body due to the spring is zero). It has been experimentally observed that when a mass is attached to a spring and the spring is elongated or compressed:
a.) The magnitude of the spring force exerted on the body is proportional to the spring's displacement from the equilibrium, and
b.) The direction of the force always points toward the equilibrium position.
c.) Assuming the force is in the x direction, these observations can be mathematically expressed as:

$$
\mathbf{F}=-\mathrm{kxi},
$$

where k is a constant that defines the amount of force required to compress the spring one meter, and x is the distance the spring is displaced from its equilibrium position (see Figure

6.18 to the right).

Note: The displacement term x is really a Δx, but as usual the convention is to assume that the initial position is at $x=0$. This leaves the displacement term as $\Delta x=x-0=x$.
3.) Noting that the force function is ZERO at $x=0$ (hence, the potential energy function must be defined as $Z E R O$ at $x=0$), we can write:

$$
\begin{aligned}
{[U(x)-U(x=0)] } & =-\int_{x=0}^{x} F_{s p r} \bullet d \mathbf{r} \\
\Rightarrow \quad U(x) & =-\int_{x=0}^{x}[-k x i] \bullet[d x i+d y \mathbf{j}+d z \mathbf{k}] \\
& =\int_{x=0}^{x}(k x) d x \\
& =k\left[\frac{x^{2}}{2}\right]_{x=0}^{x} \\
& =\left(\frac{1}{2}\right) k x^{2}
\end{aligned}
$$

4.) Having derived the potential energy function for an ideal spring as

$$
\mathrm{U}_{\mathrm{sp}}=(1 / 2) \mathrm{k}(\mathrm{x})^{2}
$$

we can now use that function in any problem in which an ideal spring does work.
5.) A Problem Involving a U Function Other Than Gravity (i.e., that of a Spring): A 2 kilogram block on a horizontal surface is placed without attachment against a spring whose spring constant is $k=12 \mathrm{nt} / \mathrm{m}$. The block is made to compress the spring . 5 meters (see Figure 6.19 below). Once done, the block is released and accelerates out away from the spring. If it slides over 2 meters of frictionless surface before sliding onto a frictional surface, and if it then proceeds to travel an additional 13 meters on the frictional surface before coming to rest, how large was the frictional force that brought it to rest?

FIGURE 6.19

Note: Do not get too comfortable with using the worklenergy theorem. It is an OK approach in some cases, but there is a much easier way to deal with the kind of information given in this problem using the concept of energy conservation. That alternative approach will be presented shortly. This example is given SOLELY to allow you to see a potential energy function other than gravity in a problem.
a.) Looking at this problem from a work/energy perspective, we need to determine two different quantities: the net change of the body's kinetic energy (i.e., its final kinetic energy minus its initial kinetic energy), and the amount of work done by all forces acting on the body between the beginning and end of its motion. In short, we need to determine:

$$
\mathrm{W}_{\mathrm{net}}=\Delta \mathrm{KE} .
$$

b.) As the mass does not rise or fall in this problem, gravity does no work and there is no reason to include the potential energy function for gravity in the work/energy expression.
c.) Writing this out as you would on a test (should you be asked to use the worklenergy theorem on a test), we get:

$$
\begin{aligned}
& \mathrm{W}_{\text {net }}=\Delta \mathrm{KE} \\
& \Rightarrow \mathrm{~W}_{\mathrm{sp}} \quad+\quad \mathrm{W}_{\mathrm{fr}}=\mathrm{KE}_{2} \quad-\quad \mathrm{KE}_{1} \\
& -\Delta \mathrm{U}_{\mathrm{sp}}+\left(-\mathrm{f}_{\mathrm{k}} \mathrm{~d}_{\mathrm{fr}}\right)=(1 / 2) \mathrm{m} \mathrm{v}_{2}{ }^{2}-(1 / 2) \mathrm{m} \mathrm{v}_{1}{ }^{2} \\
& -\left[0-(1 / 2) \mathrm{kx}^{2}\right]+\left(-\mathrm{f}_{\mathrm{k}} \mathrm{~d}_{\mathrm{fr}}\right)=(1 / 2) \mathrm{m} \mathrm{v}_{2}{ }^{2}-(1 / 2) \mathrm{m} \mathrm{v}_{1}{ }^{2} \\
& .5(12 \mathrm{nt} / \mathrm{m})(.5 \mathrm{~m})^{2}+\left(-\mathrm{f}_{\mathrm{k}}\right)(13 \mathrm{~m})=.5(2 \mathrm{~kg})(0)^{2}-.5(2 \mathrm{~kg})(0)^{2} \\
& \Rightarrow \quad \mathrm{f}_{\mathrm{k}}=.115 \mathrm{nts} .
\end{aligned}
$$

Note: Once again, THE WORK DONE BY A CONSERVATIVE FORCE FIELD ON A BODY MOVING THROUGH THE FIELD WILL ALWAYS EQUAL -($\left.U_{2}-U_{1}\right)$, ASSUMING THE POTENTIAL ENERGY FUNCTION USED IS THE PROPER FUNCTION FOR THE FORCE FIELD.

J.) Force Derived from Known Potential Energy Function:

1.) We have already established an approach for deriving the potential energy function associated with a given force function. How might we go the other way (i.e., derive a force function for a given potential energy function)?
2.) In one dimension:
a.) We can write:

$$
\int_{x_{1}}^{x_{2}} d(U)=\left[U\left(x_{2}\right)-U\left(x_{1}\right)\right]=-\int_{x_{1}}^{x_{2}} F \bullet d \mathbf{x},
$$

where the first integral is equal to the middle expression by definition, and the second expression equals the third due to the derivation of the potential energy function.
b.) This implies that:

$$
\mathrm{d}(\mathrm{U})=-\mathbf{F} \bullet \mathrm{d} \mathbf{x},
$$

which, in turn, implies that:

$$
F_{x}=-\frac{d(U)}{d x} .
$$

3.) It would be useful to have a way to denote this operation in its most general sense so that we can determine the magnitude of components of the force function along with appropriate unit vectors. That possibility exists using partial derivatives and the del operator. Specifically:
a.) As :

$$
\begin{aligned}
\nabla(U) & =\left[\frac{\partial(U)}{\partial x} \mathbf{i}+\frac{\partial(U)}{\partial y} \mathbf{j}+\frac{\partial(U)}{\partial z} \mathbf{k}\right] \\
& =-\left[F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k}\right]
\end{aligned}
$$

b.) We can write:

$$
\mathbf{F}=-\nabla(\mathrm{U}) .
$$

Note: Interesting observation: This means that the rate of change of a potential energy function in a particular direction numerically equals the force component in that direction (that is, the force component of the force function that is associated with the potential energy function).

K.) MODIFIED CONSERVATION OF ENERGY Theorem: Or, Getting to the Bottom of the Bottom Line:

Note: We are about to put the work/energy theorem into a considerably more useful form. To do so, we will spend some time with the derivation behind "the bottom line." You will not be asked to duplicate this derivation, but if you do not understand it, you will most probably not be able to use the end result to its full extent. Read the following section; think about it; then read it again. It is important that you know what is being done here.
1.) Consider an object with numerous forces acting on it as it moves from Point A to Point B. The work/energy theorem relates the amount of work done on the body to the body's change of kinetic energy. Writing this out, we get:

$$
\mathrm{W}_{\mathrm{net}}=\Delta \mathrm{KE} .
$$

The left-hand side of this equation is simply the sum of the work done by all the forces acting on the body. This equation could be written as:

$$
\mathrm{W}_{\mathrm{A}}+\mathrm{W}_{\mathrm{B}}+\mathrm{W}_{\mathrm{C}}+\mathrm{W}_{\mathrm{D}}+\ldots=\Delta \mathrm{KE},
$$

where W_{A} is the work done by force $\boldsymbol{F}_{A}, W_{B}$ is the work done by force \boldsymbol{F}_{B}, etc. For the sake of argument:
a.) Assume forces \boldsymbol{F}_{A} and \boldsymbol{F}_{B} are conservative forces with known potential energy functions U_{A} and U_{B}. If we define the body's potential energy when at Point 1 due to force field \boldsymbol{F}_{A} as $U_{A, 1}$, and the potential energy when at Point 2 due to force field \boldsymbol{F}_{A} as $U_{A, 2}$, then the work done by \boldsymbol{F}_{A} as the body moves from Point 1 to Point 2 in the force field will be:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{A}} & =-\Delta \mathrm{U}_{\mathrm{A}} \\
& =-\left(\mathrm{U}_{\mathrm{A}, 2}-\mathrm{U}_{\mathrm{A}, 1}\right) .
\end{aligned}
$$

Likewise, the work done on the body due to \boldsymbol{F}_{B} will be:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{B}} & =-\Delta \mathrm{U}_{\mathrm{B}} \\
& =-\left(\mathrm{U}_{\mathrm{B}, 2}-\mathrm{U}_{\mathrm{B}, 1}\right) .
\end{aligned}
$$

b.) Assume the forces associated with W_{C} and W_{D} are either nonconservative forces that have no potential energy function or conservative forces for which we don't know the potential energy function. If that be the case, we will have to determine those work quantities using:

$$
\mathrm{W}_{\mathrm{C}}=\mathbf{F}_{\mathrm{C}} \cdot \mathbf{d}
$$

and

$$
\mathrm{W}_{\mathrm{D}}=\mathbf{F}_{\mathrm{D}} \cdot \mathbf{d} .
$$

c.) Having made these assumptions, we can write the work/energy theorem as:

$$
\mathrm{W}_{\mathrm{A}}+\mathrm{W}_{\mathrm{B}}+\mathrm{W}_{\mathrm{C}}+\mathrm{W}_{\mathrm{D}}+\ldots=\Delta \mathrm{KE},
$$

or
$\left[-\left(\mathrm{U}_{\mathrm{A}, 2} \cdot \mathrm{U}_{\mathrm{A}, 1}\right)\right]+\left[-\left(\mathrm{U}_{\mathrm{B}, 2} \cdot \mathrm{U}_{\mathrm{B}, 1}\right)\right]+\left(\mathbf{F}_{\mathrm{C}} \cdot \mathbf{d}\right)+\left(\mathbf{F}_{\mathrm{D}} \cdot \mathbf{d}\right)+\ldots=(1 / 2) \mathrm{mv}_{2}{ }^{2}-(1 / 2) \mathrm{mv}_{1}{ }^{2}$.
d.) Multiplying the potential energy quantities by the -1 outside their parentheses, we get:

$$
\left(-\mathrm{U}_{\mathrm{A}, 2}+\mathrm{U}_{\mathrm{A}, 1}\right)+\left(-\mathrm{U}_{\mathrm{B}, 2}+\mathrm{U}_{\mathrm{B}, 1}\right)+\left(\mathbf{F}_{\mathrm{C}} \cdot \mathbf{d}\right)+\left(\mathbf{F}_{\mathrm{D}} \cdot \mathbf{d}\right)+\ldots=(1 / 2) \mathrm{mv}_{2}{ }^{2}-(1 / 2) \mathrm{mv}_{1}{ }^{2} .
$$

e.) The expression we end up with has:
i.) A number of potential energy functions evaluated at t_{1} (i.e., when the body is at Point 1);
ii.) A number of potential energy functions evaluated at t_{2} (i.e., when the body is at Point 2);
iii.) The kinetic energy function evaluated at t_{1};
iv.) The kinetic energy function evaluated at t_{2};
v.) And all the other work done on the body that we haven't been able to keep track of using potential energy functions, but that has been done on the body as it moved from Point 1 to Point 2.
f.) If we move all the time 1 terms to the left-hand side of the equation and all the time 2 terms to the right-hand side, our equation will look like:

$$
(1 / 2) \mathrm{mv}_{1}^{2}+\mathrm{U}_{\mathrm{A}, 1}+\mathrm{U}_{\mathrm{B}, 1}+\left(\mathbf{F}_{\mathrm{C}} \cdot \mathbf{d}\right)+\left(\mathbf{F}_{\mathrm{D}} \cdot \mathbf{d}\right)+\ldots=(1 / 2) \mathrm{mv}_{2}^{2}+\mathrm{U}_{\mathrm{B}, 2}+\mathrm{U}_{\mathrm{A}, 2}
$$

g.) What we have now is the kinetic energy of the body at Point 1 added to the sum of the potential energies attributed to the body while at Point 1 added to all the extraneous work done on the body (extraneous in the sense that we haven't kept track of it with potential energy functions) between Points 1 and 2 equaling the kinetic energy of the body when at Point 2 added to the sum of the potential energies of the body while at Point 2.

Written in shorthand, this is:

$$
\mathrm{KE}_{1}+\sum \mathrm{U}_{1}+\sum \mathrm{W}_{\text {extraneous }}=\mathrm{KE}_{2}+\sum \mathrm{U}_{2}
$$

h.) This is called the modified conservation of energy equation. If we identify the sum of the kinetic and potential energies of a body while at a particular point (that is, $K E_{1}+\Sigma U_{1}$) as "the total mechanical energy $E_{1} "$ of the body at that point in time, the modified conservation of energy equation can be written in an even more compact way:

$$
\mathrm{E}_{1}+\sum \mathrm{W}_{\text {extraneous }}=\mathrm{E}_{2}
$$

In this form, the equation states that the total energy of the body when at Point 1 will equal the total energy of the body when at Point 2, modified only by the "extraneous work" done to the body as it moves from Points 1 to 2. In other words, this equation keeps track of the ENERGY the body either has or has-the-potential-of-picking-up as it moves from one point to another.

Note: The word "conserved" here means "not changing with time." If we have no extraneous bits of work being done as the body moves from Point 1 to Point 2, which is to say we know the potential energy functions for all the forces doing work on the body as it moves and there are no non-conservative forces acting on the system, we can write $E_{1}=E_{2}$. This is the true "conservation of energy" equation. That equation is the mathematical way of saying, "The total energy of the system will always be the same--the body's kinetic energy may change and its potential energy may change, but the sum of the kinetic and potential energies will be a constant throughout time."

By adding the possibility of dealing with non-conservative or oddball conservative forces (one for which we haven't a potential energy function), the "modified" conservation of energy equation is extremely powerful. It allows for the analysis of situations in which E_{1} and E_{2} are not equal but are related in a deducible way.
2.) Bottom Line: When approaching a problem from the standpoint of energy considerations:
a.) Determine the amount of kinetic energy the body has to start with (this may be nothing more than writing down (1/2) $m v_{1}^{2}$) and place that information on your sketch next to the body's position at Point 1. Do the same for Point 2.
b.) Identify any conservative forces for which you know potential energy functions. Once identified, determine the amount of potential energy the body has when at Point 1 and put that information on your sketch. Do the same for Point 2.

Note: If gravity is the only force with potential energy function in the problem, this last step may amount to nothing more than writing $U_{1}=m g h_{1}$ next to Position 1 on your sketch with a similar notation at Position 2.
c.) Identify any forces that do work on the body as it moves from Point 1 to Point 2, but for which you don't have potential energy functions. Determine the amount of work they do over the motion and place that information in a convenient spot on your sketch.
d.) Take the information gleaned from Parts a, b, and c, and after writing out $K E_{1}+\sum U_{1}+\sum W_{\text {extraneous }}=K E_{2}+\sum U_{2}$, plug the information in where appropriate. Solve for the unknown(s) in which you are interested.

3.) A Simple

Example: Consider a ball of mass .25 kilograms positioned at $y_{1}=$ +4 meters above the ground. It is given an initial upward velocity of $6 \mathrm{~m} / \mathrm{s}$ at a 60° angle with the horizontal. The ball freefalls, finally reaching $y_{2}=1$ meter above the ground. If friction does 7 joules of work on the ball during the trip, how fast is the ball moving when it gets to $y_{2}=1$ meter?

a.) Consider the sketch in Figure 6.20. In it is placed all the information needed to solve this problem. WE WILL ASSUME THE ZERO POTENTIAL ENERGY LEVEL is AT THE "FINAL POSITION" (i.e., y_{2}).
b.) Remembering that the work due to friction is negative and that the zero potential energy level is at y_{2}, we can begin with the modified conservation of energy equation and write:

$$
\mathrm{KE}_{1}+\sum \mathrm{U}_{1}+\sum \mathrm{W}_{\text {extraneous }}=\mathrm{KE}_{2}+\sum \mathrm{U}_{2}
$$

c.) Spreading out that equation to see what goes where, then solving, we get:

$$
\begin{aligned}
& \mathrm{KE}_{1}+\quad \sum \mathrm{U}_{1}+\sum \mathrm{W}_{\mathrm{ext}}=\mathrm{KE}_{2}+\sum \mathrm{U}_{2} \\
& (1 / 2) \mathrm{mv}_{1}{ }^{2}+\mathrm{mg}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)+\mathrm{W}_{\mathrm{fr}}=(1 / 2) \mathrm{mv}_{2}{ }^{2}+0 \\
& .5(.25 \mathrm{~kg})(6 \mathrm{~m} / \mathrm{s})^{2}+(.25 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)[(4 \mathrm{~m})-(1 \mathrm{~m})]+(-7 \mathrm{j})=.5(.25 \mathrm{~kg}) \mathrm{v}_{2}{ }^{2}+0 \\
& \Rightarrow \quad \mathrm{v}_{2}=6.23 \mathrm{~m} / \mathrm{s} \text {. }
\end{aligned}
$$

Note 1: Important point: Notice the angle had nothing to do with this problem. As far as the concept of energy is concerned, it does not matter whether the body is moving downward or upward or sideways. The amount of energy the body has at a given instant is solely related to the body's mass and velocity, NEVER ITS DIRECTION. As such, do not waste time breaking velocity vectors into their component parts. All you need is the velocity's magnitude.

Note 2: You could just as easily have taken ground level to be the zero potential energy level. If you had, the initial potential energy would have been $m g y_{1}$ instead of $m g\left(y_{1}-y_{2}\right)$ and the final potential energy would have been $m g y_{2}$ instead of zero. Both ways work (if you don't believe me, try it); there is no preferred way to attack the problem.
4.) Example You've Already Seen, Done the Easy Way: A 2 kilogram block on a horizontal surface is placed without attachment against a spring whose spring constant is $k=12 \mathrm{nt} / \mathrm{m}$. The block is made to compress the spring .5 meters (see Figure 6.21 on the next page). Once done, the block is released and accelerates out away from the spring. If it slides over 2 meters of frictionless surface before sliding onto a frictional surface, and if it then proceeds to travel an additional 13 meters on the frictional surface before coming to rest, how large is the frictional force that brought it to rest?

Note: All the information concerning the energy state of the system when the block is at Point 1 is shown on the sketch. The same is true for Point 2. Even the work done by forces not accommodated by potential energy functions is written onto the sketch. All the information you need to use the modified conservation of energy expression is laid out in its entirety. All that has to be done from there is to put the information into the c. of e. equation.

FIGURE 6.21
a.) According to the modified conservation of energy expression:

$$
\begin{aligned}
& \mathrm{KE}_{1}+\sum \mathrm{U}_{1}+\sum \mathrm{W}_{\mathrm{ext}}=\mathrm{KE}_{2}+\quad \sum \mathrm{U}_{2} \\
& (1 / 2) \mathrm{mv}_{1}{ }^{2}+\left[\mathrm{U}_{1, \mathrm{gr}}+\mathrm{U}_{1, \mathrm{sp}}\right]+\left[\mathrm{W}_{\mathrm{f}_{\mathrm{k}}}\right]=(1 / 2) \mathrm{mv}_{2}{ }^{2}+\left[\mathrm{U}_{2, \mathrm{gr}}+\mathrm{U}_{2, \mathrm{sp}}\right] \\
& 0 \\
& +\left[0+(1 / 2) \mathrm{kx}^{2}\right]+\left[-\mathrm{f}_{\mathrm{k}} \mathrm{~d}_{\mathrm{fr}}\right]=0 \quad+\left[\begin{array}{lll}
0 & + & 0
\end{array}\right] \\
& \Rightarrow \mathrm{f}_{\mathrm{k}}=\left[\begin{array}{lll}
\mathrm{k} & \mathrm{x}^{2}
\end{array}\right] /\left[\begin{array}{ll}
2 & \mathrm{~d}_{\mathrm{fr}}
\end{array}\right] \\
& =\left[(12 \mathrm{nt} / \mathrm{m})(.5 \mathrm{~m})^{2}\right] /[2(13 \mathrm{~m})] \\
& =.115 \mathrm{nts} \text {. }
\end{aligned}
$$

b.) When this example was done in the work/energy section, you were told not to get too attached to the work/energy approach. Why? Because another approach was coming that was purported to be easier to use.

You have now seen the other technique--the modified conservation of energy approach. What makes it so easy? It is primarily end-point dependent. Indeed, you have to manually determine the amount of work done on the body in-between the end-points if you have forces for which you haven't potential energy functions, but that is considerably easier than hassling with work calculations for each force on an individual basis.

Bottom line: In short, the modified conservation of energy approach is easier to execute. Get to know it, understand it, practice it, and you'll learn to love it!
5.) A More Complex Example: A block of mass m is pressed against an unattached spring whose equilibrium position is $d_{1}=3$ meters above ground and whose spring constant is $k=25.6 \mathrm{mg} / d_{1}$ (see Figure 6.22). The block is made to compress the spring a distance $d_{1} / 8$ meters. The block is additionally forced against the side-wall by your little sister. The force she applies $\left(\boldsymbol{F}_{\text {sis }}\right)$ has a magnitude of $m g / 4$ (no, $m g$ does not stand for milligrams; it is the weight of the block--mass times gravity) at an angle of 60° with the vertical. The wall is frictional with a coefficient of friction of $\mu_{k}=.4$ (see Figure 6.23

INITIAL SET-UP

FIGURE 6.22 still pushing), the block falls. How fast will it be traveling when it reaches Position 2 a distance $d_{1} / 4$ from the ground?
a.) We need an equation that will allow us to determine the velocity of the block after it has moved to $y=$ $d_{1} / 4$. As the conservation of energy approach is related to distances traveled (these are wrapped up in the work calculations and potential energy functions) and velocities (these are wrapped up in the kinetic energy calculations), we will try

FIGURE 6.23 to use that approach here.

Note 1: As all our distance measurements are relative to the ground, we might as well take the zero potential energy level for gravity to be at groundlevel.

Note 2: When the block is released, it is accelerated downward by gravity and the spring but is also retarded in its acceleration by friction and your little sister. We know potential energy functions for gravity and the spring, but we have no function for your sister's force or friction.
b.) In its bare bones form, the modified conservation of energy equation yields (justification for each part is given below in Section $5 c$):

$$
\begin{aligned}
& 0+\left[\mathrm{mg}\left(\mathrm{~d}_{1}+\mathrm{d}_{1} / 8\right)+(1 / 2) \mathrm{kx}^{2} \quad\right]+\left[\quad \mathrm{F}_{\mathrm{sis}} \cdot \mathbf{d}_{\mathrm{sis}} \quad+\left(-\mathrm{f}_{\mathrm{k}}\right)\left(\mathrm{d}_{\mathrm{fr}}\right) \quad\right]=(1 / 2) \mathrm{mv}_{2}{ }^{2}+\left[\mathrm{mg}\left(\mathrm{~d}_{1} / 4\right)+0\right] \\
& 0+\left[\mathrm{mg}\left(9 \mathrm{~d}_{1} / 8\right)+.5\left(25.6 \mathrm{mg}^{2} \mathrm{~d}_{1}\right)\left(\mathrm{d}_{1} / 8\right)^{2}\right]+\left[(\mathrm{mg} / 4)\left(7 \mathrm{~d}_{1} / 8\right) \cos 120^{\circ}+\left(-\mu_{\mathrm{k}} \mathrm{~N}\right)\left(7 \mathrm{~d}_{1} / 8\right)\right]=(1 / 2) \mathrm{mv}_{2}{ }^{2}+\left[.25 \mathrm{mgd}_{1}+0\right] \\
& 0+\left[\left(1.125 \mathrm{mgd}_{1}\right)+\quad\left(.2 \mathrm{mgd}_{1}\right) \quad\right]+\left[\quad\left(-.11 \mathrm{mgd}_{1}\right) \quad+\left(-.074 \mathrm{mgd}_{1}\right)\right]=(1 / 2) \mathrm{mv}_{2}{ }^{2}+\left[.25 \mathrm{mgd}_{1}\right] \\
& \Rightarrow \quad \mathrm{v}_{2}=\left[1.78 \mathrm{gd}_{1}\right]^{1 / 2} \\
& =\left[1.78\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3 \mathrm{~m})\right]^{1 / 2} \\
& =7.23 \mathrm{~m} / \mathrm{s} \text {. }
\end{aligned}
$$

c.) If the pieces used in the above expression are obvious, skip this section and continue onward. If they are not obvious, the following should help:
i.) At Point 1, as the block is not initially moving:

$$
\mathrm{KE}_{1}=0
$$

ii.) At Point 1, the block has gravitational potential energy

$$
\mathrm{U}_{1, \mathrm{gr}}=\mathrm{mg}\left(\mathrm{~d}_{1}+\mathrm{d}_{1} / 8\right)=1.125 \mathrm{mgd}_{1}
$$

and spring potential energy

$$
\mathrm{U}_{1, \mathrm{sp}}=(1 / 2) \mathrm{kx}^{2}=(1 / 2)\left(25.6 \mathrm{mg} / \mathrm{d}_{1}\right)\left(\mathrm{d}_{1} / 8\right)^{2}=.2 \mathrm{mgd}_{1}
$$

iii.) At Point 2, the block has gravitational potential energy

$$
\mathrm{U}_{2, \mathrm{gr}}=\operatorname{mg}\left(\mathrm{d}_{1} / 4\right)=.25 \mathrm{mgd}_{1}
$$

iv.) At Point 2, the block has no spring potential energy (as the spring exerts no force on the block when the block is at Point 2 , the spring provides no potential energy to the block when at that point):

$$
\mathrm{U}_{2, \mathrm{sp}}=0
$$

v.) At Point 2, the block will have kinetic energy

$$
\mathrm{KE}_{2}=(1 / 2) \mathrm{mv}_{2}{ }^{2} .
$$

vi.) In between Points 1 and 2, "extraneous" work is done by little sister in the amount of:

$$
\begin{aligned}
\mathrm{W}_{\text {sis }} & =\mathbf{F}_{\text {sis }} \cdot \mathbf{d} \\
& =|\mathbf{F}||\mathbf{d}| \cos \phi \\
& =\left(\mathrm{F}_{\mathrm{sis}}\right)(\mathrm{d}) \cos 120^{\circ} \\
& =(\mathrm{mg} / 4)\left(7 \mathrm{~d}_{1} / 8\right)(-.5) \\
& =-.11 \mathrm{mgd}_{1} .
\end{aligned}
$$

vii.) In between Points 1 and 2, "extraneous" work is done by friction in the amount of:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{f}_{\mathrm{k}}} & =\mathbf{f}_{\mathrm{k}} \cdot \mathbf{d} \\
& =|\mathbf{F}||\mathbf{d}| \cos \phi \\
& =\left(\mathrm{f}_{\mathrm{k}}\right)(\mathrm{d}) \cos 180^{\circ} \\
& =\mathrm{f}_{\mathrm{k}}\left(7 \mathrm{~d}_{1} / 8\right)(-1) \\
& =-.875 \mathrm{f}_{\mathrm{k}} \mathrm{~d}_{1} .
\end{aligned}
$$

viii.) To solve this, we need f_{k}. The easiest way to determine f_{k} is with Newton's Second Law (the free body diagram shown in Figure 6.24 is for the body in mid-flight--it looks a bit different from the fbd for the section of flight during which the spring is still engaged, but the horizontal components are identical in both cases). Doing so yields:

FIGURE 6.24

$$
\begin{aligned}
& \underline{\sum \mathrm{F}_{\mathrm{x}}:} \\
& \mathrm{N}-\mathrm{F}_{\mathrm{sis}} \sin \theta
\end{aligned}=\mathrm{ma}_{\mathrm{x}}=0 .
$$

The frictional force is, therefore:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{k}} & =\mu_{\mathrm{k}} \mathrm{~N} \\
& =(.4)(.215 \mathrm{mg}) \\
& =.085 \mathrm{mg} .
\end{aligned}
$$

With that, we can determine the work friction does:

$$
\begin{aligned}
\mathrm{W}_{\mathrm{f}_{\mathrm{k}}} & =-.875 \mathrm{f}_{\mathrm{k}} \mathrm{~d}_{1} \\
& =-.875(.085 \mathrm{mg}) \mathrm{d}_{1} \\
& =-.074 \mathrm{mgd}_{1} .
\end{aligned}
$$

d.) As we did in the beginning, putting it all together yields:

$$
\begin{aligned}
& \mathrm{KE}_{1}+\quad \sum \mathrm{U}_{1} \quad+\quad \sum \mathrm{W}_{\mathrm{ext}} \quad=\mathrm{KE}_{2}+\sum \mathrm{U}_{2} \\
& 0+\left[\mathrm{U}_{1, \mathrm{gr}}+\mathrm{U}_{1, \mathrm{sp}}\right]+\left[\mathrm{W}_{\mathrm{sis}} \quad+\mathrm{W}_{\mathrm{f}_{\mathrm{k}}}\right]=(1 / 2) \mathrm{mv}_{2}{ }^{2}+\left[\mathrm{U}_{2, \mathrm{gr}}+0\right] \\
& 0+\left[\mathrm{mg}\left(\mathrm{~d}_{1}+\mathrm{d}_{1} / 8\right)+(1 / 2) \mathrm{kx}^{2} \quad\right]+\left[\quad \mathrm{F}_{\mathrm{sis}} \cdot \mathbf{d}_{\mathrm{sis}} \quad+\left(-\mathrm{f}_{\mathrm{k}}\right)\left(\mathrm{d}_{\mathrm{fr}}\right) \quad\right]=(1 / 2) \mathrm{mv}_{2}{ }^{2}+\left[\mathrm{mg}\left(\mathrm{~d}_{1} / 4\right)+0\right] \\
& 0+\left[\mathrm{mg}\left(9 \mathrm{~d}_{1} / 8\right)+.5\left(25.6 \mathrm{mg} / \mathrm{d}_{1}\right)\left(\mathrm{d}_{1} / 8\right)^{2}\right]+\left[(\mathrm{mg} / 4)\left(7 \mathrm{~d}_{1} / 8\right) \cos 120^{\circ}+\left(-\mu_{\mathrm{k}} \mathrm{~N}\right)\left(7 \mathrm{~d}_{1} / 8\right)\right]=(1 / 2) \mathrm{mv}_{2}{ }^{2}+\left[.25 \mathrm{mgd}_{1}+0\right] \\
& 0+\left[\left(1.125 \operatorname{mgd}_{1}\right)+\left(.2 \operatorname{mgd}_{1}\right) \quad\right]+\left[\quad\left(-.11 \mathrm{mgd}_{1}\right) \quad+\left(-.074 \mathrm{mgd}_{1}\right)\right]=(1 / 2) \mathrm{mv}_{2}{ }^{2}+\left[.25 \operatorname{mgd}_{1}\right] \\
& \Rightarrow \quad \mathrm{v}_{2}=\left[1.78 \mathrm{gd}_{1}\right]^{1 / 2} \\
& =\left[1.78\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(3 \mathrm{~m})\right]^{1 / 2} \\
& =7.23 \mathrm{~m} / \mathrm{s} \text {. }
\end{aligned}
$$

L. One More Twist--Energy Considerations with Multiple-Body Systems:

1.) The idea behind the modified conservation of energy equation is that it is possible to keep track of not only the amount of energy in a system, but also how the energy is distributed throughout the system.
2.) Up until now, all we have examined have been single-body systems. It is possible to extend the energy considerations approach to take into account the energy of a whole group of objects.
3.) Executing this expanded version of the modified conservation of energy approach:
a.) Calculate the total kinetic energy (i.e., the kinetic energy of each body in the system added together) at time t_{1}.
b.) To that, add the total potential energy (i.e., all potential energy of all sorts acting on each body in the system, all added together) at time t_{1}.
c.) To that, add the total extra work done on all the bodies in the system between times t_{1} and t_{2}.
d.) Put the above sum equal to the total kinetic energy plus the total potential energy in the system at time t_{2}.
4.) The modified modified conservation of energy equation thus becomes:

$$
\sum \mathrm{KE}_{1, \text { tot }}+\sum \mathrm{U}_{1, \text { tot }}+\sum \mathrm{W}_{\text {extra,tot }}=\sum \mathrm{KE}_{2, \text { tot }}+\sum \mathrm{U}_{2, \text { tot }}
$$

5.) Example: An Atwood Machine is simply a string threaded over a pulley with a mass attached to each end (see Figure 6.25). Assuming the pulley is ideal (i.e., massless and frictionless) and that $m_{1}<m_{2}$, how fast will m_{1} be moving if the system begins from rest and freefalls a distance h meters?
a.) The system in its initial state is shown in Figure 6.25. Notice that each body is assigned a zero gravitational-poten-tial-energy level of its own.

Note: We could have assigned a common level, but it is easier the other way (remember, where the zero is for a given body doesn't matter--it is changes in potential energy that count).
b.) Figure
6.26 shows the system after the freefall. Notice that mass m_{2} has moved below its zero-poten-tial-energy-level, making the potential energy at that point negative.

Note: The
amount of work
tension does on m_{1} is
$+T(h)$, whereas the amount of work

tension does on m_{2} is
$-T(h)$. As such, the two work quantities associated with the tension in the line add to zero.
c.) Putting everything together and executing the modified conservation of energy approach, we get:

$$
\begin{aligned}
& \sum \mathrm{KE}_{1, \text { tot }}+\sum \mathrm{U}_{1, \text { tot }}+\sum \mathrm{W}_{\text {extra,tot }}=\sum \mathrm{KE}_{2, \text { tot }}+\sum \mathrm{U}_{2, \text { tot }} . \\
& {\left[\mathrm{KE}_{1, \mathrm{~m}_{1}}+\mathrm{KE}_{1, \mathrm{~m}_{2}}\right]+\left[\mathrm{U}_{1, \mathrm{~m}_{1}}+\mathrm{U}_{1, \mathrm{~m}_{2}}\right]+[\mathrm{T}(\mathrm{~h})+\mathrm{T}(-\mathrm{h})]=\left[\mathrm{KE}_{2, \mathrm{~m}_{1}}+\mathrm{KE}_{2, \mathrm{~m}_{2}}\right]+\left[\mathrm{U}_{2, \mathrm{~m}_{1}}+\mathrm{U}_{2, \mathrm{~m}_{2}}\right]} \\
& {[0+0]+[0+0]+[0]=\left[.5 \mathrm{~m}_{1} \mathrm{v}^{2}+.5 \mathrm{~m}_{2} \mathrm{v}^{2}\right]+\left[\mathrm{m}_{1} \mathrm{gh}+\mathrm{m}_{2} \mathrm{~g}(-\mathrm{h})\right]} \\
& \Rightarrow \quad \mathrm{v}=\left[\left[-\mathrm{m}_{1} \mathrm{gh}+\mathrm{m}_{2} \mathrm{gh}\right] /\left[.5\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)\right]\right]^{1 / 2} .
\end{aligned}
$$

M.) Power:

1.) There are instances when knowing how much work is done by a force is not enough. As an example, it may seem impressive to know that a particular motor can do 120,000 joules of work, but not if it takes ten years for
it to do so. The amount of work per unit time being done is often more important than how much work can be done.
2.) The physics-related quantity that measures "work per unit time" is called power. It is defined as:

$$
\mathrm{P}=\mathrm{W} / \mathrm{t},
$$

where t is the time interval over which the work W is done.
3.) The units for power in the MKS system are $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{3}$. This is the same as a joules/second, which in turn is given the special name watts. Although the watt is a unit most people associate with electrical devices (the light bulb you are using to read this passage is probably between 60 watts and 150 watts), the quantity is also used in mechanical systems. Automobiles are rated by their horsepower. One horsepower is supposedly the amount of work a "standard" horse can do per unit time. As formally defined, one horsepower equals 746 watts.
4.) A special relationship is often derived in physics books that relates the amount of power provided by a force \boldsymbol{F} as it is applied to a body that moves a distance \boldsymbol{d} with constant velocity \boldsymbol{v}. Simply presented:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{F}} & =\mathrm{W} / \mathrm{t} \\
& =(\mathbf{F} \cdot \mathbf{d}) / \mathrm{t} \\
& =\mathbf{F} \cdot(\mathbf{d} / \mathrm{t}) \\
& =\mathbf{F} \cdot \mathbf{v} .
\end{aligned}
$$

This manipulation has been included for the sake of completeness.

QUESTIONS

6.1) A 3 kilogram mass moving at $2 \mathrm{~m} / \mathrm{s}$ is pulled 35 meters up a 25° incline by a force F (see Figure I). If the coefficient of friction between the mass and the incline is .3:
a.) How much work does gravity do as the mass moves up the incline to the 35 meter mark?
b.) How much work does friction do as the mass moves up the incline to the

FIGURE I 35 meter mark?
c.) How much work does the normal force do as the mass moves up the incline to the 35 meter mark?
d.) How much kinetic energy does the mass initially have?
e.) WORK/ENERGY PROBLEM: Assuming the mass's velocity at
the 35 meter mark is $7 \mathrm{~m} / \mathrm{s}$, use the work/energy theorem to determine the force F. Do this as you would on a test. That is, forget for the moment that you have done any work above and lay this problem out completely in algebraic form before putting in numbers.
6.2) A force \boldsymbol{F} is applied to a mass $m=.5 \mathrm{~kg}$ as it proceeds up a frictional, hemispherical dome ($\mu_{k}=.2$) of radius $R=.3$ meters. The force is ALWAYS at an angle of 12°, relative to the mass's motion (see Figure II). \boldsymbol{F} also varies so as to keep the mass's very slow velocity constant throughout the motion. Assuming the velocity is additionally very, very small (i.e., so that the centripetal acceleration v^{2} / R is minuscule), how much work does \boldsymbol{F} do on the mass as it moves from an angle of 20° to an
positioning of forceF
when mass is at
an arbitrary angle θ

FIGURE II angle of 60° up the dome? Put the numbers in last.
6.3) How much energy is stored in a spring compressed 20 centimeters (. 2 meters) if the spring's spring constant is $k=120 \mathrm{nts} / \mathrm{m}$?
6.4) Derive an expression for the force function associated with the potential energy function shown below.

$$
U(x, y)=-\left(k_{1} / x\right) e^{-k y} .
$$

You may assume the k terms have magnitudes of one and have the appropriate units.
6.5) Determine the potential energy function for the force function:

$$
\mathbf{F}=\left[\left(\mathrm{k}_{1} \ln \mathrm{x}\right)-3\right] \mathbf{i}-\left[\mathrm{k}_{2} \mathrm{y}^{2}\right] \mathbf{j} .
$$

Assume the magnitudes k_{1} and k_{2} are both one and that each has the appropriate units. Also, assume that $x>1$.
6.6) Tarzan $\left(m_{T}=80 \mathrm{~kg}\right)$ stands on a 12 meter high knoll (see Figure III). He grabs a taut, 15 meter long vine attached to a branch located 17 meters above the ground and swings down from rest to Jane perched on a 5 meter high mole hill (they breed particularly big moles in Africa).
a.) What is Tarzan's velocity when he reaches Jane?
b.) What is the tension in the

ne when Tarzan is at the bottom of the arc? (Note: Tarzan is moving through a CIRCULAR path).
c.) What is the tension in the vine just before Tarzan lets go upon reaching Jane?
6.7) A 12 kilogram crate starts from rest at the top of a curved incline whose radius is 2 meters (see Figure IV). It slides down the incline, then proceeds 18 additional meters before coming to rest. What is the frictional force between the crate and the supporting floor (both curved and horizontal)?

FIGURE III vine when Tarzan is at the bottom
not to scale

FIGURE IV

Assume this frictional force is constant throughout the entire motion.
6.8) Pygmies use blow-guns and 15 gram (.015 kg) darts dipped in the poison curare to immobilize and kill monkeys that live in the tree-top canopy of their forest home. Assume a pygmy at ground level blows a dart at 85° (relative to the horizontal) at a monkey that is 35 vertical meters up (over 100 feet). Assuming a dart must be moving at $4 \mathrm{~m} / \mathrm{s}$ to effectively pierce monkey skin, what is the minimum velocity the dart must be moving as it leaves the blow-gun if it is to pierce the monkey?
6.9) A freewheeling 1800 kilogram roller coaster cart is found to be moving $38 \mathrm{~m} / \mathrm{s}$ at Point A (see Figure V). The actual distance between:

Point A and Point B is 70 meters;
Point B and Point C is 60 meters;
Point C and Point D is 40 meters.
If the average frictional force acting throughout the motion is 27 newtons, the radius of the loop is 20 meters, the first hill's height 25 me ters, the first dip 15 meters, and the incline just after the loop coming di-
 rectly off the loop's bottom at an angle of 30° :
a.) How fast is the cart moving at Point C ?
b.) How far up the incline d will the cart travel before coming to rest?
c.) What must the cart's minimum velocity be at Point A if it is to just make it through the top of the loop without falling out of its CIRCULAR MOTION (hint, hint).

Note: The phrase "just making it through the top" means that for all intents and purposes, the normal force applied to the cart by the track goes to zero leaving gravity the only force available to affect the cart's motion at the top.
6.10) A spring-loaded bumper is placed on a 55° frictional incline plane. A 60 kilogram crate breaks loose a distance 3 meters up the incline above the bumper and accelerates down the incline (see Figure VI). If the average
frictional force applied to the crate by the incline is 100 newtons and the spring constant is 20,000 newtons/meter:
a.) How much will the bumper spring compress in bringing the crate to rest? (Assume there is friction even after the crate comes in contact with the bumper).
b.) The crate
compresses the bumper's spring which then pushes the crate back up the incline (the crate
 effectively bounces off the bumper). If a total of three-quarters of the crate's kinetic energy is lost during the collision, how far back up the incline will the crate go before coming to rest?
6.11) Because gravitational attraction between you and the earth becomes less and less as you get higher and higher above the earth's surface, the gravitational potential energy function for a body of mass m_{1} that is a substantial distance d units away from the earth's surface is not $m g h$; it is:

$$
\mathrm{U}=-\mathrm{Gm}_{1} \mathrm{~m}_{\mathrm{e}} /\left(\mathrm{r}_{\mathrm{e}}+\mathrm{d}\right),
$$

where G is called the universal gravitational constant $\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}\right), m_{e}$ is the mass of the earth $\left(5.98 \times 10^{24} \mathrm{~kg}\right)$, and r_{e} is the radius of the earth $\left(6.37 \times 10^{6} \mathrm{~m}\right)$.

A satellite is observed moving at $1500 \mathrm{~m} / \mathrm{s}$ when 120,000 meters above the earth's surface. It moves in an elliptical path which means its height and velocity are not constants. After a time, the satellite is observed at 90,000 meters. Ignoring frictional effects, how fast is the satellite traveling at this second point?
6.12) A string of length L is pinned to the ceiling at one end and has a mass m attached to its other end. If the mass is held in the horizontal and released from rest, it freefalls down through an arc of radius L until the string collides with a peg located a distance $L / 3$ from the bottom of the arc (see Figure VIIa). From there it proceeds along an arc of lesser radius (i.e., a radius of $L / 3$).

Assuming one-tenth of the energy in the system is lost during this collision, what will the tension T in the string be as the body moves through the top of its final arc (see Figure VIIb)?

INITIAL POSITION

FIGURE VIIa

AT TOP OF SWING

FIGURE VIIb

